Giant eyes in Xenopus laevis by overexpression of XOptx2. (1/186)

Overexpression of XOptx2, a homeodomain-containing transcription factor expressed in the Xenopus embryonic eye field, results in a dramatic increase in eye size. An XOptx2-Engrailed repressor gives a similar phenotype, while an XOptx2-VP16 activator reduces eye size. XOptx2 stimulates bromodeoxyuridine incorporation, and XOptx2-induced eye enlargement is dependent on cellular proliferation. Moreover, retinoblasts transfected with XOptx2 produce clones of cells approximately twice as large as control clones. Pax6, which does not increase eye size alone, acts synergistically with XOptx2. Our results suggest that XOptx2, in combination with other genes expressed in the eye field, is crucially involved in the proliferative state of retinoblasts and thereby the size of the eye.  (+info)

Induction of melanoma in TPras transgenic mice. (2/186)

In order to study the oncogenesis of melanocytes, transgenic mouse lines were established that express a mutated human Ha-ras (TPras) gene in pigment producing cells. The ras transgenic mice exhibit an altered phenotype, including melanocytic hyperplasia and a muted agouti coat, indicative of hyperproliferative melanocytes. These mice and their wild-type littermates have been subjected to a variety of carcinogenesis protocols, including 7, 12-dimethylbenz-[a]anthracene (DMBA), 12-O-tetradecanoylphorbol-13-acetate (TPA) and UV radiation exposure. Topical DMBA treatment of TPras mice resulted in a high incidence of melanomas. Metastatic lesions were observed in skin, lungs and lymph nodes. TPA treatment of TPras mice induced a small number of papillomas but no nevi or melanomas. UV light exposures induced papillomas in negative littermate and melanomas in some albino TPras mice. These results show that melanocytes expressing an activated Ha-ras in the TPras transgenic mice are susceptible to induction of melanoma by DMBA.  (+info)

Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. (3/186)

We examined optokinetic and optomotor responses of 450 zebrafish mutants, which were isolated previously based on defects in organ formation, tissue patterning, pigmentation, axon guidance, or other visible phenotypes. These strains carry single point mutations in >400 essential loci. We asked which fraction of the mutants develop blindness or other types of impairments specific to the visual system. Twelve mutants failed to respond in either one or both of our assays. Subsequent histological and electroretinographic analysis revealed unique deficits at various stages of the visual pathway, including lens degeneration (bumper), melanin deficiency (sandy), lack of ganglion cells (lakritz), ipsilateral misrouting of axons (belladonna), optic-nerve disorganization (grumpy and sleepy), inner nuclear layer or outer plexiform layer malfunction (noir, dropje, and possibly steifftier), and disruption of retinotectal impulse activity (macho and blumenkohl). Surprisingly, mutants with abnormally large or small eyes or severe wiring defects frequently exhibit no discernible behavioral deficits. In addition, we identified 13 blind mutants that display outer-retina dystrophy, making this syndrome the single-most common cause of inherited blindness in zebrafish. Our screen showed that a significant fraction (approximately 5%) of the essential loci also participate in visual functions but did not reveal any systematic genetic linkage to particular morphological traits. The mutations uncovered by our behavioral assays provide distinct entry points for the study of visual pathways and set the stage for a genetic dissection of vertebrate vision.  (+info)

Extrinsic modulation of retinal ganglion cell projections: analysis of the albino mutation in pigmentation mosaic mice. (4/186)

Tyrosinase is a key enzyme involved in the synthesis of melanin in the retinal pigment epithelium (RPE). Mice that are homozygous for the albino allele at the tyrosinase locus have fewer retinal ganglion cells with uncrossed projections at the optic chiasm. To determine the site of the albino gene action we studied the projections of retinal ganglion cells in two types of pigmentation mosaic mice. First, we generated mosaic mice that contain a translocated allele of the wild-type tyrosinase on one X chromosome but that also have the lacZ reporter transgene on the opposite X chromosome. In these lacZ/tyrosinase mice, which are homozygous for the albino allele on chromosome 7, X-inactivation ensures that tyrosinase cannot be functional within 50% of the retinal ganglion cells and that these individual cells can be identified by their expression of the lacZ reporter gene product, beta-galactosidase. The proportion of uncrossed retinal ganglion cells expressing beta-galactosidase was found to be identical to the proportion that did not express it, indicating that the albino mutation associated with axonal behavior at the optic chiasm must affect ganglion cells in a cell-extrinsic manner. Second, to determine whether the RPE is the source of the extrinsic signal, we generated aggregation chimeras between pigmented and albino mice. In these mosaic mice, the extent of the uncrossed projection corresponded with the amount of pigmented cells within the RPE, but did not correspond with the genotypes of neural retinal cells. These studies demonstrate that the albino mutation acts indirectly upon retinal ganglion cells, which in turn respond by making axonal guidance errors at the optic chiasm.  (+info)

Genetically determined protein polymorphism in the rabbit nervous system. (5/186)

One of the polypeptides (H1) of the rabbit nervous system occurs in an altered form (H2) in some rabbits. The electrophoretic mobility of H2 on sodium dodecyl sulfate-polyacrylamide gels is about 6% greater than that of H1, suggesting that the two polypeptides differ in molecular weight by about 10,000. The alteration is genetically determined since (i) rabbit phenotypes corresponding to all possible genotypes (H1H1, H1H2, H2H2) were present in an outbred population of rabbits, (ii) the frequency of the phenotype corresponding to the heterozygous genotype (H1H2) was smaller in partially inbred rabbit populations than in outbred populations, and (iii) all of the individuals examined from two partially inbred strains (WH/J and X/J) were of the phenotype that would be expected if they were homozygous (H2H2) for the rare allele of the gene. Preliminary evidence indicates that this polymorphic polypeptide is most abundant in the white matter of the nervous systems of several mammalian species, and is distributed with buffers of low ionic strength and centrifuged at 100,000 Xg.  (+info)

arg-cys substitution at codon 1246 of the human myosin Va gene is not associated with Griscelli syndrome. (6/186)

Myosin Va is an actin-associated motor protein involved in organelle transport such as melanosomes and neuron synaptic vesicles and has always been proposed as the candidate gene for the autosomal recessive Griscelli-Prunieras syndrome, one of the silvery hair syndromes, which is a lethal disease combining immunodeficiency and neurologic and pigmentary abnormalities. Thus far, two mutations in the myosin Va gene have been described to be associated with this syndrome. One of these mutations was a homozygous mis-sense mutation causing an arginine to cysteine alteration at codon 1246. Because we also found this particular substitution after mutation analysis of a Griscelli patient, we checked its relevance in a control group of 124 unrelated healthy individuals and found it to be present, even in homozygous state, in normal unaffected individuals. It is clear that this arg1246cys substitution is a polymorphism occurring in the human population and not occurring in association with Griscelli syndrome. Distinguishing a polymorphism from a bona fide mutation is of utmost importance and has major ethical implications with regard to prenatal genetic counseling in affected families.  (+info)

X mapping in man: evidence against direct measurable linkage between ocular albinism and deutan colour blindness. (7/186)

A Newfoundland kindred in which ocular albinism and deutan colour blindness are segregating provides strong evidence against the loci for these two X-borne characters being within direct measurable distance of each other.  (+info)

Bile mediates intestinal pathology in endotoxemia in rats. (8/186)

Intestinal pathology frequently accompanies experimental endotoxic shock and is mediated by proinflammatory cytokines. Our hypotheses are that hepatobiliary factors operating from the luminal side of the gut make a major contribution to this damage and that tumor necrosis factor alpha (TNF-alpha) is involved in the pathology. We treated rats with lipopolysaccharide (LPS) intravenously and found that external drainage of bile totally protected the gastrointestinal tract, macroscopically and microscopically, 4 h after LPS administration and dramatically improved survival of the animals for 48 h after LPS administration. The concentration of TNF-alpha in bile increased markedly after LPS administration and was over 30 times higher in bile than in serum. Tissue damage and the biliary TNF-alpha response were abrogated when animals were pretreated with gadolinium chloride to eliminate Kupffer cells. TNF-alpha infusion into the duodenal lumen caused intestinal damage similar to that elicited by intravenous LPS. In rats treated with LPS, survival was significantly increased during the first 36 h in animals given an infusion of anti-TNF-alpha antibody into the duodenum. These results demonstrate that in endotoxemia, intestinal damage is mediated by factors derived from the bile. The findings indicate that luminally acting TNF-alpha contributes to the intestinal damage.  (+info)