Molecular and functional analysis of a novel neuronal vesicular glutamate transporter. (1/227)

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Packaging and storage of glutamate into glutamatergic neuronal vesicles requires ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. VGLUT1, the first identified vesicular glutamate transporter, is only expressed in a subset of glutamatergic neurons. We report here the molecular cloning and functional characterization of a novel glutamate transporter, VGLUT2, from mouse brain. VGLUT2 has all major functional characteristics of a synaptic vesicle glutamate transporter, including ATP dependence, chloride stimulation, substrate specificity, and substrate affinity. It has 75 and 79% amino acid identity with human and rat VGLUT1, respectively. However, expression patterns of VGLUT2 in brain are different from that of VGLUT1. In addition, VGLUT2 activity is dependent on both membrane potential and pH gradient of the electrochemical proton gradient, whereas VGLUT1 is primarily dependent on only membrane potential. The presence of VGLUT2 in brain regions lacking VGLUT1 suggests that the two isoforms together play an important role in vesicular glutamate transport in glutamatergic neurons.  (+info)

The expression of vesicular glutamate transporters defines two classes of excitatory synapse. (2/227)

The quantal release of glutamate depends on its transport into synaptic vesicles. Recent work has shown that a protein previously implicated in the uptake of inorganic phosphate across the plasma membrane catalyzes glutamate uptake by synaptic vesicles. However, only a subset of glutamate neurons expresses this vesicular glutamate transporter (VGLUT1). We now report that excitatory neurons lacking VGLUT1 express a closely related protein that has also been implicated in phosphate transport. Like VGLUT1, this protein localizes to synaptic vesicles and functions as a vesicular glutamate transporter (VGLUT2). The complementary expression of VGLUT1 and 2 defines two distinct classes of excitatory synapse.  (+info)

Differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI) is a vesicular glutamate transporter in endocrine glutamatergic systems. (3/227)

Vesicular glutamate transporter is present in neuronal synaptic vesicles and endocrine synaptic-like microvesicles and is responsible for vesicular storage of L-glutamate. A brain-specific Na(+)-dependent inorganic phosphate transporter (BNPI) functions as a vesicular glutamate transporter in synaptic vesicles, and the expression of this BNPI defines the glutamatergic phenotype in the central nervous system (Bellocchio, E. E., Reimer, R. J., Fremeau, R. T., Jr., and Edwards, R. H. (2000) Science 289, 957-960; Takamori, S., Rhee, J. S., Rosenmund, C., and Jahn, R. (2000) Nature 407, 189-194). However, since not all glutamatergic neurons contain BNPI, an additional transporter(s) responsible for vesicular glutamate uptake has been postulated. Here we report that differentiation-associated Na(+)-dependent inorganic phosphate cotransporter (DNPI), an isoform of BNPI (Aihara, Y., Mashima, H., Onda, H., Hisano, S., Kasuya, H., Hori, T., Yamada, S., Tomura, H., Yamada, Y., Inoue, I., Kojima, I., and Takeda, J. (2000) J. Neurochem. 74, 2622-2625), also transports L-glutamate at the expense of an electrochemical gradient of protons established by the vacuolar proton pump when expressed in COS7 cells. Molecular, biological, and immunohistochemical studies have indicated that besides its presence in neuronal cells DNPI is preferentially expressed in mammalian pinealocytes, alphaTC6 cells, clonal pancreatic alpha cells, and alpha cells of Langerhans islets, these cells being proven to secrete L-glutamate through Ca(2+)-dependent regulated exocytosis followed by its vesicular storage. Pancreatic polypeptide-secreting F cells of Langerhans islets also expressed DNPI. These results constitute evidence that DNPI functions as another vesicular transporter in glutamatergic endocrine cells as well as in neurons.  (+info)

The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. (4/227)

Before their exocytotic release during stimulation of nerve terminals, nonpeptide neurotransmitters are loaded into synaptic vesicles by specific transporters. Recently, a protein initially identified as brain-specific Na(+)-dependent inorganic phosphate transporter I (BNPI) has been shown to represent a vesicular glutamate transporter (VGLUT1). In this study, we investigated whether a highly homologous "differentiation-associated Na(+)-dependent inorganic phosphate transporter" (DNPI) is involved in glutamatergic transmission. Vesicles isolated from BON cells expressing recombinant DNPI accumulated l-glutamate with bioenergetical and pharmacological characteristics identical to those displayed by VGLUT1 and by brain synaptic vesicles. Moreover, DNPI localized to synaptic vesicles, at synapses exhibiting classical excitatory features. DNPI thus represents a novel vesicular glutamate transporter (VGLUT2). The distributions of each VGLUT transcript in brain were highly complementary, with only a partial regional and cellular overlap. At the protein level, we could only detect either VGLUT1- or VGLUT2-expressing presynaptic boutons. The existence of two VGLUTs thus defines distinct subsets of glutamatergic neurons.  (+info)

Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). (5/227)

Glutamate is the major excitatory neurotransmitter in mammalian CNS. In the presynaptic nerve terminal, glutamate is stored in synaptic vesicles and released by exocytosis. Previously, it has been shown that a transport protein originally identified as a brain-specific Na(+)-dependent inorganic phosphate transporter I (BNPI) functions as vesicular glutamate transporter and thus has been renamed VGLUT1. Recently, a protein highly homologous to VGLUT1, "differentiation-associated BNPI" (DNPI), has been discovered. Northern blot and in situ hybridization analyses indicate that DNPI mRNA is expressed in some brain regions in which VGLUT1 mRNA is not expressed. We now show that DNPI functions as vesicular glutamate transporter with properties very similar to VGLUT1 and propose to rename the protein VGLUT2. VGLUT2 is highly enriched in synaptic vesicles. Furthermore, VGLUT2 resides on a vesicle population that is distinct from vesicles containing the vesicular GABA transporter or VGLUT1, showing that the expression of VGLUT1 and VGLUT2 do not overlap. When VGLUT2 was expressed in BON cells, membrane fractions displayed ATP-dependent, carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive glutamate uptake. Overexpression of VGLUT2 in cultured autaptic GABAergic neurons yielded postsynaptic currents that were insensitive to the GABA(A) receptor antagonist bicuculline but blocked by the AMPA-receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[F]quinoxaline. Thus, expression of VGLUT2 suffices to cause GABAergic neurons to release glutamate in addition to GABA in a manner very similar to that reported previously for VGLUT1.  (+info)

Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. (6/227)

Glutamate transport into synaptic vesicles is a prerequisite for its regulated neurosecretion. Here we functionally identify a second isoform of the vesicular glutamate transporter (VGLUT2) that was previously identified as a plasma membrane Na+-dependent inorganic phosphate transporter (differentiation-associated Na+/P(I) transporter). Studies using intracellular vesicles from transiently transfected PC12 cells indicate that uptake by VGLUT2 is highly selective for glutamate, is H+ dependent, and requires Cl- ion. Both the vesicular membrane potential (Deltapsi) and the proton gradient (DeltapH) are important driving forces for vesicular glutamate accumulation under physiological Cl- concentrations. Using an antibody specific for VGLUT2, we also find that this protein is enriched on synaptic vesicles and selective for a distinct class of glutamatergic nerve terminals. The pathway-specific, complementary expression of two different vesicular glutamate transporters suggests functional diversity in the regulation of vesicular release at excitatory synapses. Together, the two isoforms may account for the uptake of glutamate by synaptic vesicles from all central glutamatergic neurons.  (+info)

Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. (7/227)

According to a recent theory (Gray et al., 1999) the neurokinin-1 receptor (NK1R)-immunoreactive (ir) neurons of the ventral respiratory group (VRG) are confined to the pre-Botzinger complex (pre-BotC) and might be glutamatergic interneurons that drive respiratory rhythmogenesis. In this study we tested whether the NK1R-ir neurons of the VRG are glutamatergic. We also examined whether different groups of NK1R-ir neurons coexist in the VRG on the basis of whether these cells contain preproenkephalin (PPE) mRNA or project to the spinal cord. NK1R immunoreactivity was found in two populations of VRG neurons that are both predominantly glutamatergic because most of them contained vesicular glutamate transporter 2 mRNA (77 +/- 9%; n = 3). A group of small fusiform neurons (somatic cross section: 91 +/- 3.6 microm2) that has neither PPE mRNA nor spinal projections is primarily restricted to the pre-BotC. These cells may be the interneurons the destruction of which produces massive disruptions of the respiratory rhythm (Gray et al., 2001). The rest of the NK1R-ir neurons of the VRG are multipolar, are larger (somatic cross section: 252 +/- 15 microm2), and express high levels of PPE mRNA. Some of these cells located in the rostral half of the rostral VRG project to the spinal cord (C4 or T3). Using electrophysiological methods, we showed that these bulbospinal NK1R-ir neurons are slowly discharging inspiratory-augmenting neurons, suggesting that they may control phrenic or intercostal motor neurons. In summary, NK1R-expressing cells of the VRG are a heterogeneous group of predominantly glutamatergic neurons that include subpopulations of respiratory premotor neurons.  (+info)

A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. (8/227)

Two proteins previously known as Na(+)-dependent phosphate transporters have been identified recently as vesicular glutamate transporters (VGLUT1 and VGLUT2). Together, VGLUT1 and VGLUT2 are operating at most central glutamatergic synapses. In this study, we characterized a third vesicular glutamate transporter (VGLUT3), highly homologous to VGLUT1 and VGLUT2. Vesicles isolated from endocrine cells expressing recombinant VGLUT3 accumulated l-glutamate with bioenergetic and pharmacological characteristics similar, but not identical, to those displayed by the type-1 and type-2 isoforms. Interestingly, the distribution of VGLUT3 mRNA was restricted to a small number of neurons scattered in the striatum, hippocampus, cerebral cortex, and raphe nuclei, in contrast to VGLUT1 and VGLUT2 transcripts, which are massively expressed in cortical and deep structures of the brain, respectively. At the ultrastructural level, VGLUT3 immunoreactivity was concentrated over synaptic vesicle clusters present in nerve endings forming asymmetrical as well as symmetrical synapses. Finally, VGLUT3-positive neurons of the striatum and raphe nuclei were shown to coexpress acetylcholine and serotonin transporters, respectively. Our study reveals a novel class of glutamatergic nerve terminals and suggests that cholinergic striatal interneurons and serotoninergic neurons from the brainstem may store and release glutamate.  (+info)