Pathological changes in chickens, ducks and turkeys fed high levels of rapeseed oil. (1/1246)

Rations containing 25% of either regular rapeseed oil (36% erucic acid), Oro rapeseed oil (1.9% erucic acid), soybean oil or a mixture of lard and corn oil were fed to chickens, ducks and turkeys. The regular rapeseed oil ration caused growth depression, increased feed conversion and anemia in all species. All the ducks and some of the chickens fed the regular rapeseed oil ration died. These dead birds were affected with hydropericardium and ascites. No deaths in the turkeys could be attributed to the regular rapeseed oil ration but some turkeys fed this ration had degenerative foci characterized by infiltrations of histiocytic and giant cells in the myocardium. Severe fatty change in the heart, skeletal muscles, spleen and kidney was found at an early age in all birds fed the regular rapeseed oil ration. Less severe fatty change but no other lesions were found in birds fed the Oro rapeseed oil and soybean oil rations.  (+info)

Phosphorylation by protein kinase C decreases catalytic activity of avian phospholipase C-beta. (2/1246)

The potential role of protein kinase C (PKC)-promoted phosphorylation has been examined in the G-protein-regulated inositol lipid signalling pathway. Incubation of [32P]Pi-labelled turkey erythrocytes with either the P2Y1 receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) or with PMA resulted in a marked increase in incorporation of 32P into the G-protein-activated phospholipase C PLC-betaT. Purified PLC-betaT also was phosphorylated by PKC in vitro to a stoichiometry (mean+/-S. E.M.) of 1.06+/-0.2 mol of phosphate/mol of PLC-betaT. Phosphorylation by PKC was isoenzyme-specific because, under identical conditions, mammalian PLC-beta2 also was phosphorylated to a stoichiometry near unity, whereas mammalian PLC-beta1 was not phosphorylated by PKC. The effects of PKC-promoted phosphorylation on enzyme activity were assessed by reconstituting purified PLC-betaT with turkey erythrocyte membranes devoid of endogenous PLC activity. Phosphorylation resulted in a decrease in basal activity, AlF4(-)-stimulated activity, and activity stimulated by 2MeSATP plus guanosine 5'-[gamma-thio]triphosphate in the reconstituted membranes. The decreases in enzyme activities were proportional to the extent of PKC-promoted phosphorylation. Catalytic activity assessed by using mixed detergent/phospholipid micelles also was decreased by up to 60% by phosphorylation. The effect of phosphorylation on Gqalpha-stimulated PLC-betaT in reconstitution experiments with purified proteins was not greater than that observed on basal activity alone. Taken together, these results illustrate that PKC phosphorylates PLC-betaT in vivo and to a physiologically relevant stoichiometry in vitro. Phosphorylation is accompanied by a concomitant loss of enzyme activity, reflected as a decrease in overall catalytic activity rather than as a specific modification of G-protein-regulated activity.  (+info)

Enhanced adhesion of Pasteurella multocida to cultured turkey peripheral blood monocytes. (3/1246)

Capsular hyaluronic acid (HA) mediates adhesion of serogroup A strains of Pasteurella multocida to elicited turkey air sac macrophages (TASM). In contrast, freshly isolated turkey peripheral blood monocytes (TPBM) do not bind serogroup A strains. Following culture of TPBM for 6 days in chamber slides, adhesion of the bacteria to TPBM increased gradually. Incubation in chamber slides coated with entactin-collagen IV-laminin (ECL) attachment matrix or exposure to phorbol myristate acetate (PMA) further enhanced the adhesion of P. multocida to TPBM. Addition of HA, but not Arg-Gly-Asp peptide, to TPBM culture inhibited bacterial adherence similarly to the inhibition previously reported for TASM. Exposure of TPBM to monoclonal antibody directed against HA-binding cell surface proteoglycan (CD44) decreased binding of P. multocida. Collectively, these findings indicate that P. multocida adhesion to TPBM is mediated by capsular HA and can be increased by culture on ECL attachment matrix or PMA exposure. Additionally, the findings suggest that the capsular mucopolysaccharide of serogroup A strains of P. multocida recognizes an isoform of CD44 expressed on cultured TPBM.  (+info)

Morphology of the epididymal region and ductus deferens of the turkey (Meleagris gallopavo). (4/1246)

The ductal system of the reproductive tract of the male domestic turkey was studied by gross dissection and light microscopy of paraffin and Epon embedded tissues. The succession of ductules as one passes caudally from the testis was as follows: seminiferous tubules; rete testis; ductuli efferentes; connecting ductules; ductus epididymidis; ductus deferens; receptaculum ductus deferentis; papilla ductus deferentis. Non-ciliated cells of the male tract consisted of squamous and low cuboidal cells of the rete testis, granulated columnar cells lining the ductuli efferentes and connective ductules; agranulated columnar cells which formed the epithelium of the ductus epididymidis, ductus deferens, receptaculum and papilla ductus deferentis; and basal cells which were found in increasing number from the ductuli efferentes to the papilla. The basal cells had a reduced amount of cytoplasm and stained more intensely than the other cell types. Ciliated cells were apparent in the ductuli efferentes and connecting ductules, and these consistently stained lighter than the non-ciliated cells. Non-ciliated columnar cells of the ductuli efferentes and connecting ductules contained chromatophilic granules. Cytoplasmic blebbing into the ductal lumina was found associated with these non-ciliated cells as well as the agranular cells of the ductus epididymidis and deferens. Evidence obtained from this study suggests that the non-ciliated cells of the ductuli efferentes, ductus epididymidis and ductus deferens have a contribution to make to the seminal plasma by apocrine secretion.  (+info)

Ca2+-dependent interaction of the inhibitory region of troponin I with acidic residues in the N-terminal domain of troponin C. (5/1246)

Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  (+info)

Enzyme kinetic characterization of the smooth muscle myosin phosphorylating system: activation by calcium and calmodulin and possible inhibitory mechanisms of antagonists. (6/1246)

A native-like smooth muscle filamentous myosin system was characterized from an enzyme kinetic point of view. The system contains endogenous myosin light chain kinase (MLCKase) and calmodulin (CM) (A. Sobieszek, J. Muscle Res. Cell Motil. 11 (1990) 114-124) and is, therefore, well suited for testing the action of CM-antagonists or other inhibitory compounds. However, this has not been done due to its complexity. The characterization of the system includes: (1) derivation of a relationship for rate of myosin phosphorylation in terms of total CM, free Ca2+ and total MLCKase concentrations, which includes only three binding constants; and (2) derivation of relationships between fractional inhibition rate (vi/vo) and total inhibitor concentration (It) which cover most of the inhibitory mechanisms applicable to the myosin system or to other CM-dependent enzymes. The three binding constants were subsequently evaluated from experimental data for filamentous myosin and for its isolated regulatory light chain (ReLC) using a non-linear regression software. They indicated differences in the interaction of myosin filament with the active CM-MLCKase complex in comparison to that of the isolated ReLC. The derived vi/vo versus It relationships, together with the software, make it possible to evaluate the inhibition constants and binding stoichiometries of CM-antagonists and other compounds inhibiting myosin phosphorylation. This approach was successfully applied to experimental data on inhibition of MLCKase by amiloride, cadmium, or CM-binding peptide (M-12) for simple mechanisms. For more complex mechanisms, inhibition by calmidozolium, trifluoperazine or melittin, the analysis showed that only calmidozolium acted specifically at the CM level in a multiple-site activator-depletion mechanism. Melittin and trifluoperazine inhibited the phosphorylation rate by a novel substrate-and-activator depletion mechanism, in which additional inhibition of the substrate resulted in the removal of the inhibition at lower range of the antagonists' concentration.  (+info)

Interactions of alpha- and beta-N-acetyl-D-glucosamines with hen and turkey lysozymes. (7/1246)

The binding constants of alpha- and beta-GlcNAc to hen and turkey lysozymes [EC 3.2.1.17] were determined at various pH's using the method proposed by Ikeda and Hamaguchi (1975) J. Biochem. 77, 1-16). The pH dependence of the binding of beta-GlcNAc to hen lysozyme was essentially the same as that for turkey lysozyme. The pH dependence curves of the binding constants of beta-GlcNAc to hen and turkey lysozymes were interpreted in terms of the participation of Glu 35 (pK 6.0), Asp 52 (pK 3.5), Asp 48 (pK 4.5), and Asp 66 (pK 1.5). The binding constants of alpha-GlcNAc to hen and turkey lysozymes were the same below pH 3.5 but were different above this pH. The main participant residues in the binding of alpha-GlcNAc were Glu 35, Asp 48, and Asp 66 for hen lysozyme and Glu 35 and Asp 66 for turkey lysozyme. The results obtained here were well explained by the following assumptions: (1) above about pH 4, alpha-GlcNAc binds to hen lysozyme in both alpha- and beta-modes, which correspond to the binding orientation of alpha-GlcNAc and that of beta-GlcNAc, respectively, as determined by X-ray crystallographic studies, but it binds predominantly in the beta-mode below about pH 4, (2) beta-GlcNAc binds to hen and turkey lysozymes predominantly in the beta-mode above about pH 4 and in both alpha- and beta-modes below pH 4, and (3) alpha-GlcNAc binds to turkey lysozyme predominantly in the beta-mode over the whole pH range studied.  (+info)

D1 and D2 dopamine receptor messenger ribonucleic acid in brain and pituitary during the reproductive cycle of the turkey hen. (8/1246)

The regulation of prolactin secretion during the reproductive cycle of seasonal breeding birds appears to be largely under the stimulatory influence of hypothalamic vasoactive intestinal peptide (VIP). However, the factors influencing VIP secretion, and hence prolactin release, in birds remain largely unexplored. Recent evidence has demonstrated that dopamine and dopamine receptors may affect VIP and prolactin release in birds. The differential expression of dopamine receptors on hypothalamic VIP-releasing neurons may affect the degree of prolactinemia observed during the reproductive cycle of birds. In order to examine this hypothesis, we used reverse transcription-polymerase chain reaction to quantitate the levels of D1 and D2 dopamine receptor subtype mRNAs in the brain of the domestic turkey hen during the reproductive cycle. No significant difference in hypothalamic expression of D1 or D2 dopamine receptor subtypes during the reproductive cycle was observed. However, pronounced differences in D1D and D2 mRNAs were detected in cortex and cerebellum. Interestingly, there was a dramatic increase in pituitary D1D receptor mRNA during the reproductive stages of laying and incubation of eggs, which paralleled the hyperprolactinemic state of the turkey reproductive cycle. In addition, pituitary D2 receptor mRNA steadily increased throughout the reproductive cycle. In light of these observations, a modified hypothesis regarding the effects of dopamine on prolactin secretion is discussed.  (+info)