Fish swimbladder: an excellent mesodermal inductor in primary embryonic induction. (1/85)

Swimbladder of the crucian carp, Carassius auratus, was found to be better as a vegatalizing tissue than other tissues, such as guinea-pig bone marrow, when presumptive ectoderm of Triturus gastrulae was used as reacting tissue. Swimbladder usually induced assemblies of highly organized mesodermal tissues, such as notochord, somites and pronephric tubules, some of which were covered by mesodermal epithelium without any epidermal covering. A special character of the effect of swimbladder was the rather frequent induction of solid balls of undifferentiated cells, which were identified as mesodermal or mesodermal and probably endodermal. These findings show that swimbladder has a strong and fast spreading vegetalizing effect on the responding presumptive ectoderm.  (+info)

In vitro nitric oxide effects on basal and gonadotropin-releasing hormone-induced gonadotropin secretion by pituitary gland of male crested newt (Triturus carnifex) during the annual reproductive cycle. (2/85)

The objective of this study was to test the possible nitric oxide (NO) involvement in pituitary gonadotropin secretion in the male crested newt, Triturus carnifex. Pituitaries were incubated in vitro with medium alone, GnRH, NO donor (NOd, sodium nitroprusside), NO synthase inhibitor (NOSi, Nomega-nitro-L-arginine methyl ester), cGMP analogue (cGMPa, 8-bromo-cGMP), soluble guanylate cyclase inhibitor (sGCi, cystamine), GnRH plus NOSi, GnRH plus sGCi, and NOd plus sGCi during the annual reproductive cycle: pre-reproduction, reproduction (noncourtship and courtship), and the refractory, recovery, and estivation periods. To determine pituitary gonadotropin secretion indirectly, newt testes were superfused in vitro with preincubated pituitaries, and androgen release was determined. NO synthase (NOS) activity and cGMP levels were assessed in the preincubated pituitaries. Medium alone- and GnRH-preincubated pituitary increased androgen secretion during pre-reproduction, noncourtship, courtship, and recovery; the GnRH-induced increase was higher than the medium alone-induced increase during pre-reproduction, noncourtship, and recovery. NOd and cGMPa increased androgens in all reproductive phases considered except courtship; the NOd- and cGMP-induced increase was higher than the medium alone-induced increase during pre-reproduction, noncourtship, and recovery. NOS activity was highest during courtship and lowest during the refractory and estivation periods. GnRH increased NOS activity during pre-reproduction, noncourtship, and recovery. Cyclic GMP levels were highest during courtship and lowest during the refractory period and estivation. GnRH increased cGMP levels during pre-reproduction, noncourtship, and recovery, while NOd did so during all reproductive phases considered. These results suggest that basal and GnRH-induced gonadotropin secretion are up-regulated by NO in the pituitary gland of the male Triturus carnifex.  (+info)

The permeability to cytochalasin B of the new unpigmented surface in the first cleavage furrow of the newt's egg. (3/85)

Two of 10 mug/ml cytochalasin B (CB) caused retraction of the first cleavage furrow in Triturus eggs, a spreading of the unpigmented surface from the furrow region and a flattening of the whole egg. CB appears to act against the contractility of the microfilamentous band at mid-cleavage so as to relax the furrow and also to weaken unpigmented surface to allow the egg to flatten. Uncleaved eggs and the initial formation of the cleavage groove were unaffected by CB. A fully-retracted first cleavage furrow reformed itself on transfer of the egg to normal medium but only at the time of second cleavage. Initiation of second cleavage depended upon there being sufficient of the original pigmented surface on the animal hemisphere. Tritium-labelled CB of high specific activty was prepared and used to study its ability to penetrate the surface of newt eggs during cleavage. Scintillation couting of whole eggs showed that CB was not taken into the newt egg until mid-cleavage (about 17 min after the double stripe stage) when new surface began to spread in the cleavage furrow. Fixation in glutaraldehyde and osmium tetroxide retained radioactivity in the egg, but more CB was retained after fixation in osmium tetroxide alone than after double fixation. Most of the retained radioactivity was in yolk platelets. Autoradiographs were prepared to sectioned eggs which had been fixed at late cleavage after [3H]CB had flattend the furrow. These showed that CB entered the egg through the unpigmented surface which formed in the furrow but it could not enter through the pigmented surface. The impermeability of the pigmented surface explains the observations that CB does not prevent initial furrowing at cleavage. Once inside the egg CB is transported slowly. CB penetrates to a limited extent beneath the pigmented surface from its border with the unpigmented surface in the first cleavage furrow and this seems insufficient in some circumstances to suppress the contractile phase of second cleavage.  (+info)

Classification of loops of lampbrush chromosomes according to the arrangement of transcriptional complexes. (4/85)

The arrangement of transcriptional units in the loops of lampbrush chromosomes from oocyte nuclei of urodele amphibia and from primary nuclei of the green alga Acetabularia have been studied in the electron microscope using spread preparations. Loops with different patterns of arrangement of matrix units (i.e. to a first approximation, transcriptional units) can be distinguished: (i) loops consisting of one active transcriptional unit; (ii) loops containing one active transcriptional unit plus additional fibril-free, i.e. apparently untranscribed, intercepts that may include 'spacer' regions; (iii) loops containing two or more transcriptional units arranged in identical or changing polarities, with or without interspersed apparent spacer regions. Morphological details of the transcriptional complexes are described. The observations are not compatible with the concept that one loop reflects one and only one transcriptional unit but, rather, lead to a classification of loop types according to the arrangement of their transcriptional units. We propose that the lampbrush chromosome loop can represent a unit for the coordinate transcription of either one gene or a set of several (different) genes.  (+info)

Increase in liver pigmentation during natural hibernation in some amphibians. (5/85)

The amount/distribution of liver melanin in 3 amphibian species (Rana esculenta, Triturus a. apuanus, Triturus carnifex) was studied during 2 periods of the annual cycle (summer activity-winter hibernation) by light and electron microscopy, image analysis and microspectrofluorometry. The increase in liver pigmentation (melanin content) during winter appeared to be correlated with morphological and functional modifications in the hepatocytes, which at this period were characterised by a decrease in metabolic activity. These findings were interpreted according to the functional role (e.g. phagocytosis, cytotoxic substance inactivation) played by the pigment cell component in the general physiology of the heterothermic vertebrate liver and, in particular, in relation to a compensatory engagement of these cells against hepatocellular hypoactivity during the winter period.  (+info)

Immunohistochemical localisation of amelogenin-like proteins and type I collagen and histochemical demonstration of sulphated glycoconjugates in developing enameloid and enamel matrices of the larval urodele (Triturus pyrrhogaster) teeth. (6/85)

The presence of collagen in enameloid distinguishes it clearly from true enamel, but little is known about the phylogenetic relationship between these 2 tissues. It has previously been reported that amelogenins are the principal proteins of the enamel matrix, that type I collagen and chondroitin sulphates are the predominant matrices in dentine, and that amphibian and reptilian aprismatic enamels, contain no sulphated glycoconjugates, although certain sulphated substances are secreted into mammalian prismatic enamel during matrix formation. The larval urodele (Triturus pyrrhogaster) teeth are known to be composed of enameloid, dentine, and enamel-like tissue. To characterise the tooth matrices, the localisation of amelogenin-like proteins, type I collagen, and sulphated glycoconjugates was investigated. Chondroitin sulphates and fine fibrils immunoreactive for type I collagen were elaborated as the enameloid matrix inside the dental basement membrane. After the matrix had been deposited in full thickness, coarse collagen fibrils also immunoreactive for type I collagen and chondroitin sulphates were deposited below as the first dentine matrix. Further, enamel-like matrix with no collagen fibrils or sulphated glycoconjugates but strongly immunoreactive for amelogenins was deposited on the dentine. Although no immunolabelling for amelogenins was found over the enameloid matrix, at least at the formation stage, the zone of coarse collagen fibrils of dentine was partially immunoreactive as observed in mammalian mantle dentine. From the ontogeny and matrix constituents of larval urodele teeth, it is suggested that enameloid is originally a dentine-like tissue.  (+info)

Planar signalling is not sufficient to generate a specific anterior/posterior neural pattern in pseudoexogastrula explants from Xenopus and Triturus. (7/85)

Early observations on the morphology of total exogastrulae from urodeles (Axolotl) had provided evidence for essential vertical signalling mechanisms in the process of neural induction. Conversely, more recent studies with anurans (Xenopus laevis) making use of molecular markers for neural-specific gene expression appear to support the idea of planar signalling as providing sufficient information for neural differentiation along the anterior-posterior axis. In an attempt to resolve this apparent contradiction, we report on the comparative analysis of morphology and gene expression characteristics with explants prepared from both urodeles (Triturus alpestris) and anurans (Xenopus laevis). For this purpose, we have made use of a refined experimental protocol for the preparation of exogastrulae that is intended to combine the advantages of the Holtfreter type exogastrula and the Keller sandwich techniques, and which we refer to as pseudoexogastrula explants. Analysis of histology and expression of several neural and ectodermal marker genes in such explants suggests that neural differentiation is induced in both species, but only within the intermediate zone between ectoderm and endomesoderm. Therefore, experiments with Xenopus and Triturus explants described in this communication argue against planar signalling events as being sufficient to generate a specific anterior/posterior neural pattern.  (+info)

A novel RNA-binding protein from Triturus carnifex identified by RNA-ligand screening with the newt hammerhead ribozyme. (8/85)

The newt hammerhead ribozyme is transcribed from Satellite 2 DNA, which consists of tandemly repeated units of 330 bp. However, different transcripts are synthesized in different tissues. In all somatic tissues and in testes, dimeric and multimeric RNA transcripts are generated which, to some extent, self-cleave into monomers at the hammerhead domain. In ovaries, primarily a distinct monomeric unit is formed by transcription, which retains an intact hammerhead self-cleavage site. The ovarian monomeric RNA associates to form a 12S complex with proteins that are poorly characterised so far. In this work we identified NORA, a protein that binds the ovarian form of the newt ribozyme. We show that the newt ribozyme binds to the Escherichia coli -expressed protein, as well as to a protein of identical size that is found exclusively in newt ovaries. Also NORA mRNA was detectable only in ovary, but in neither somatic tissues nor testes. The tissue-specific expression of NORA is analogous to the ovary-specific transcription of the newt ribozyme. Although NORA was identified by its ability to bind to the newt ribozyme in the presence of a vast excess of carrier RNA, it was able to interact with certain other RNA probes. This novel RNA-binding protein does not contain any motif characteristic for RNA-binding proteins or any other known protein domain, but it shares a striking similarity with a rat resiniferatoxin-binding protein.  (+info)