Pharmacology of LY315920/S-5920, [[3-(aminooxoacetyl)-2-ethyl-1- (phenylmethyl)-1H-indol-4-yl]oxy] acetate, a potent and selective secretory phospholipase A2 inhibitor: A new class of anti-inflammatory drugs, SPI. (1/1000)

LY315920 is a potent, selective inhibitor of recombinant human, group IIA, nonpancreatic secretory PLA2 (sPLA2). In a chromogenic isolated enzyme assay, LY315920 inhibited sPLA2 activity with an IC50 of 9 +/- 1 nM or 7.3 x 10(-6) mole fraction, which approached the stiochiometric limit of this assay. The true potency of LY315920 was defined using a deoxycholate/phosphatidylcholine assay with a mole fraction of 1.5 x 10(-6). LY315920 was 40-fold less active against human, group IB, pancreatic sPLA2 and was inactive against cytosolic PLA2 and the constitutive and inducible forms of cyclooxygenase. Human sPLA2-induced release of thromboxane A2 (TXA2) from isolated guinea pig lung bronchoalveolar lavage cells was inhibited by LY315920 with an IC50 of 0.79 microM. The release of TXA2 from these cells by N-formyl-methionyl-leucyl-phenylalanine or arachidonic acid was not inhibited. The i.v. administration of LY315920, 5 min before harvesting the bronchoalveolar lavage cells, resulted in the inhibition of sPLA2-induced production of TXA2 with an ED50 of 16.1 mg/kg. Challenge of guinea pig lung pleural strips with sPLA2 produced contractile responses that were suppressed in a concentration-dependent manner by LY315920 with an apparent KB of 83 +/- 14 nM. Contractile responses induced by arachidonic acid were not altered. Intravenous or oral administration of LY315920 to transgenic mice expressing the human sPLA2 protein inhibited serum sPLA2 activity in a dose-related manner over a 4-h time course. LY315920 is a potent and selective sPLA2 inhibitor and represents a new class of anti-inflammatory agent designated SPI. This agent is currently undergoing clinical evaluation and should help to define the role of sPLA2 in various inflammatory disease states.  (+info)

Nitric oxide limits the eicosanoid-dependent bronchoconstriction and hypotension induced by endothelin-1 in the guinea-pig. (2/1000)

1. This study attempts to investigate if endogenous nitric oxide (NO) can modulate the eicosanoid-releasing properties of intravenously administered endothelin-1 (ET-1) in the pulmonary and circulatory systems in the guinea-pig. 2. The nitric oxide synthase blocker N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 microM; 30 min infusion) potentiated, in an L-arginine sensitive fashion, the release of thromboxane A2 (TxA2) stimulated by ET-1, the selective ET(B) receptor agonist IRL 1620 (Suc-[Glu9,Ala11,15]-ET-1(8-21)) or bradykinin (BK) (5, 50 and 50 nM, respectively, 3 min infusion) in guinea-pig isolated and perfused lungs. 3. In anaesthetized and ventilated guinea-pigs intravenous injection of ET-1 (0.1-1.0 nmol kg(-1)), IRL 1620 (0.2-1.6 nmol kg(-1)), BK (1.0-10.0 nmol kg(-1)) or U 46619 (0.2-5.7 nmol kg(-1)) each induced dose-dependent increases in pulmonary insufflation pressure (PIP). Pretreatment with L-NAME (5 mg kg(-1)) did not change basal PIP, but increased, in L-arginine sensitive manner, the magnitude of the PIP increases (in both amplitude and duration) triggered by each of the peptides (at 0.25, 0.4 and 1.0 nmol kg(-1), respectively), without modifying bronchoconstriction caused by U 46619 (0.57 nmol kg(-1)). 4. The increases in PIP induced by ET-1, IRL 1620 (0.25 and 0.4 nmol kg(-1), respectively) or U 46619 (0.57 nmol kg(-1)) were accompanied by rapid and transient increases of mean arterial blood pressure (MAP). Pretreatment with L-NAME (5 mg kg(-1); i.v. raised basal MAP persistently and, under this condition, subsequent administration of ET-1 or IRL 1620, but not of U-46619, induced hypotensive responses which were prevented by pretreatment with the cyclo-oxygenase inhibitor indomethacin. 5. Thus, endogenous NO appears to modulate ET-1-induced bronchoconstriction and pressor effects in the guinea-pig by limiting the peptide's ability to induce, possibly via ET(B) receptors, the release of TxA2 in the lungs and of vasodilatory prostanoids in the systemic circulation. Furthermore, it would seem that these eicosanoid-dependent actions of ET-1 in the pulmonary system and on systemic arterial resistance in this species are physiologically dissociated.  (+info)

Predominant inhibition of ganodermic acid S on the thromboxane A2-dependent pathway in human platelets response to collagen. (3/1000)

Ganodermic acid S (GAS), a membrane acting agent, exerts multiple effects on human platelet function (C.N. Wang et al. (1991) Biochem. J. 277, 189-197). The study reported how GAS affected the response of human gel-filtered platelets (GFP) to collagen. The agent inhibited cell aggregation by prolonging lag and shape change periods and decreasing the initial cell aggregation rate. However, the inhibitory efficiency was less than its inhibition on GFP response to U46619, a thromboxane (TX) A2 mimetic. In the agent-effect on biochemical events, GAS effectively inhibited Ca2+ mobilization, phosphorylation of myosin light chain, dense granule secretion and TXB2 generation. The inhibitions might originate from blocking Ca2+ mobilization of the TXA2-dependent pathway. GAS partially decreased the phosphorylation of most phosphotyrosine proteins from early activation to the integrin alphaIIbbeta3-regulated steps. The agent did not affect the phosphorylation of three proteins at the steps regulated by integrin alphaIIbbeta3. The results suggest that GAS inhibits the collagen response predominantly on the TXA2-dependent signaling, and the tyrosine kinase-dependent pathway in collagen response plays a major role in aggregation.  (+info)

Hemodynamic and renal effects of U-46619, a TXA2/PGH2 analog, in late-pregnant rats. (4/1000)

The vasoconstrictor effects of pressor agents are attenuated during pregnancy. Thromboxane A2 (TXA2) is produced in great quantities during hypertension in pregnancy, and therefore it is important to know whether pregnancy modifies the pressor effects of TXA2. The TXA2 analog U-46619 was infused in anesthetized, acutely prepared and conscious, chronically prepared late-pregnant and nonpregnant female rats to examine its systemic hemodynamic and renal effects. Mean arterial pressure (MAP) and total peripheral resistance (TPR) were lower in anesthetized pregnant than nonpregnant rats (P < 0.01). The infusion of U-46619 into the aortic arch resulted in elevation of MAP only in pregnant rats, due to a greater elevation of TPR (60 +/- 17%) compared with nonpregnant rats (36 +/- 6%, P < 0.05). The pressor effect of intravenously infused U-46619 was also enhanced in conscious pregnant versus nonpregnant rats, and the increase in renal vascular resistance was undiminished. U-46619 increased hematocrit and plasma protein concentration more during pregnancy, which suggested greater reduction of plasma volume. The urinary excretion of sodium (-1.49 +/- 0.25 vs. -0.54 +/- 0.24 micromol/min) and water was reduced more in pregnant than nonpregnant rats during U-46619 (P < 0.01). Thus the MAP and renal effects of the TXA2 analog are exaggerated during pregnancy in the rat.  (+info)

Prostacyclin synthase gene transfer accelerates reendothelialization and inhibits neointimal formation in rat carotid arteries after balloon injury. (5/1000)

Prostacyclin (PGI2), a metabolite of arachidonic acid, has the vasoprotective effects of vasodilation, anti-platelet aggregation, and inhibition of smooth muscle cell proliferation. We hypothesized that an overexpression of endogenous PGI2 may accelerate the recovery from endothelial damage and inhibit neointimal formation in the injured artery. To test this hypothesis, we investigated in vivo transfer of the PGI2 synthase (PCS) gene into balloon-injured rat carotid arteries by a nonviral lipotransfection method. Seven days after transfection, a significant regeneration of endothelium was observed in the arteries transfected with a plasmid carrying the rat PCS gene (pCMV-PCS), but little regeneration was seen in those with the control plasmid carrying the lacZ gene (pCMV-lacZ) (percent luminal circumference lined by newly regenerated endothelium: 87. 1+/-6.9% in pCMV-PCS-transfected vessels and 6.9+/-0.2% in pCMV-lacZ vessels, P<0.001). BrdU staining of arterial segments demonstrated a significantly lower incorporation in pCMV-PCS-transfected vessels (7. 5+/-0.3% positive nuclei in vessel cells) than in pCMV-lacZ (50. 7+/-9.6%, P<0.01). Moreover, 2 weeks after transfection, the PCS gene transfer resulted in a significant inhibition of neointimal formation (88% reduction in ratio of intima/media areas), whereas medial area was similar among the groups. Arterial segments transfected with pCMV-PCS produced significantly higher levels of 6-keto-PGF1alpha, the main metabolite of PGI2, compared with the segments transfected with pCMV-lacZ (10.2+/-0.55 and 2.1+/-0.32 ng/mg tissue for pCMV-PCS and pCMV-placZ, P<0.001). In conclusion, this study demonstrated that an in vivo PCS gene transfer increased the production of PGI2 and markedly inhibited neointimal formation with accelerated reendothelialization in rat carotid arteries after balloon injury.  (+info)

Role of thromboxane A2 in healing of gastric ulcers in rats. (6/1000)

We investigated the role of thromboxane (TX) A2 in gastric ulcer healing in rats. Acetic acid ulcers were produced in male Donryu rats. TXA2 synthesis in the stomachs with ulcers was significantly elevated in ulcerated tissue, but not in intact tissue, compared with that in the gastric mucosa of normal rats. Indomethacin inhibited both TXA2 and prostaglandin E2 (PGE2) synthesis in ulcerated tissue, while NS-398 (selective cyclooxygenase-2 inhibitor) reduced only PGE2 synthesis. OKY-046 (TXA2 synthase inhibitor) dose-relatedly inhibited only TXA2 synthesis. The maximal effect of OKY-046 (80% inhibition) was found at more than 30 mg/kg. When OKY-046 was administered for 14 days, the drug at more than 30 mg/kg significantly accelerated ulcer healing without affecting acid secretion. The maximal reduction of ulcerated area by OKY-046 was about 30%, compared with the area in the control. Histological studies revealed that regeneration of the mucosa was significantly promoted by OKY-046, but neither maturation of the ulcer base nor angiogenesis in the base were affected. OKY-046 and TXB2 had no effect on proliferation of cultured rat gastric epithelial cells, but U-46619 (TXA2 mimetic) dose-relatedly prevented the proliferation without reducing cell viability. These results indicate that the increased TXA2, probably derived from cyclooxygenase-1 in ulcerated tissue, exerts a weak inhibitory effect on ulcer healing in rats. The effect of TXA2 might be due partly to prevention of gastric epithelial cell proliferation at the ulcer margin.  (+info)

Prevention of persistent cerebral smooth muscle contraction in response to whole blood. (7/1000)

Using an in vitro system designed to measure arterial constriction, we have demonstrated the importance of platelet function in maintaining cerebral smooth muscle contraction after whole blood injection. We tested two agents, acetyl salicylic acid (ASA) and phthalazinol, both known to interfere with platelet function. In control tests normal rabbit and monkey blood produced a reliable and persistent arterial constriction. In experimental tests blood drawn from animals premedicated with ASA and phthalazinol failed to produce a persistent contraction. These results support the hypothesis that chemicals released during platelet aggregation may be important in persistent vasospasm.  (+info)

The phospholipase C inhibitor U73122 inhibits phorbol ester-induced platelet activation. (8/1000)

Activation of phospholipase C (PLC) is a central component of the signal transduction process in numerous cells, including platelets. U73122 has been widely used as a selective PLC inhibitor. In the present study, the effects of U73122 on platelet function have been further examined. Platelets were stimulated with collagen (via PLC-gamma), the stable thromboxane mimetic U46619 (via PLC-beta), or phorbol myristate acetate (PMA) via protein kinase C (PKC). Consistent with inhibition of PLC, U73122 inhibited platelet aggregation and [3H]-serotonin release in response to collagen and U46619 in a concentration-dependent manner. Similarly, U73122 blocked collagen-induced release of thromboxane A2. U73122 also inhibited U46619-induced [32P]phosphatidic acid production and phosphorylation of the major PKC substrate, pleckstrin. U73122 had no effect on PMA-induced pleckstrin phosphorylation, [3H]-serotonin release, or intracellular vacuole formation. However, U73122 did inhibit PMA-induced platelet aggregation and fibrinogen binding. Overall, these results suggest that U73122, in addition to its inhibition of PLC, also affects PKC-independent events that interfere with platelet aggregation.  (+info)