Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat. (1/86)

In this investigation we have estimated the afferent contribution to the generation of activity in the knee and ankle extensor muscles during walking in decerebrate cats by loading and unloading extensor muscles, and by unilateral deafferentation of a hind leg. The total contribution of afferent feedback to extensor burst generation was estimated by allowing one hind leg to step into a hole in the treadmill belt on which the animal was walking. In the absence of ground support the level of activity in knee and ankle extensor muscles was reduced to approximately 70% of normal. Activity in the ankle extensors could be restored during the "foot-in-hole" trials by selectively resisting extension at the ankle. Thus feedback from proprioceptors in the ankle extensor muscles probably makes a large contribution to burst generation in these muscles during weight-bearing steps. Similarly, feedback from proprioceptors in knee extensor appears to contribute substantially to the activation of knee extensor muscles because unloading and loading these muscles, by lifting and dropping the hindquarters, strongly reduced and increased, respectively, the level of activity in the knee extensors. This conclusion was supported by the finding that partial deafferentation of one hind leg by transection of the L4-L6 dorsal roots reduced the level of activity in the knee extensors by approximately 50%, but did not noticeably influence the activity in ankle extensor muscles. However, extending the deafferentation to include the L7-S2 dorsal roots decreased the ankle extensor activity. We conclude that afferent feedback contributes to more than one-half of the input to knee and ankle extensor motoneurons during the stance phase of walking in decerebrate cats. The continuous contribution of afferent feedback to the generation of extensor activity could function to automatically adjust the intensity of activity to meet external demands.  (+info)

Alteration of descending modulation of nociception during the course of monoarthritis in the rat. (2/86)

Diffuse noxious inhibitory controls (DNIC), which involve supraspinal structures and modulate the transmission of nociceptive signals, were investigated at different stages during the development of adjuvant-induced monoarthritis in the rat. After behavioral evaluation, recordings of trigeminal convergent neurons were performed in anesthetized animals with acute (24-48 hr) or chronic (3-4 weeks) monoarthritis of the ankle. Inhibitions of C-fiber-evoked neuronal responses during and after the application of noxious conditioning stimuli to the ankle were measured to evaluate DNIC. The conditioning stimuli consisted of mechanical (maximal flexion and graded pressures) and graded thermal stimuli and were applied alternately to normal and arthritic ankles. Behaviorally, the two groups of animals exhibited a similar increased sensitivity to mechanical stimuli applied to the arthritic joint (i.e., an increased ankle-bend score and a decreased vocalization threshold to pressure stimuli). However, they showed different electrophysiological profiles. In the animals with acute monoarthritis, the DNIC-induced inhibitions produced by mechanical or thermal stimulation of the arthritic joint were significantly increased at all intensities compared with the normal joint. In contrast, in the chronic stage of monoarthritis, the DNIC-induced inhibitions triggered by thermal or pressure stimuli were similar for both ankles, except with the most intense mechanical stimuli. This discrepancy between the behavioral and electrophysiological findings suggests that inputs activated during chronic monoarthritis may fail to recruit DNIC and may thus be functionally different from those activated in the acute stage of inflammation.  (+info)

Adenoviral transfer of the viral IL-10 gene periarticularly to mouse paws suppresses development of collagen-induced arthritis in both injected and uninjected paws. (3/86)

Gene therapy is a promising new approach in the treatment of rheumatoid arthritis. Gene delivery to diseased joints offers the prospect of achieving high, local concentrations of a therapeutic gene product in a sustained manner, while minimizing exposure of nontarget organs. We report that a single administration of a modified adenovirus encoding the Epstein-Barr-derived homologue of IL-10 can suppress the development of disease for extended periods of time when injected locally within the periarticular tissue surrounding the ankle joints of mice with collagen type II-induced arthritis. Furthermore, we show that injection of an adenoviral vector carrying the IL-10 gene into a single paw can suppress development of arthritis in other, noninjected paws of the same individual. The systemic protection resulting from local gene therapy occurred in the absence of detectable levels of viral IL-10 in the serum. Circulating Ab levels to heterologous collagen were unaffected; however, treatment with viral IL-10 significantly suppressed the development of Abs to autologous mouse type II collagen. Thus, the treatment of a single joint by local delivery of the vIL-10 gene may protect multiple joints of the same individual while avoiding deleterious side effects often associated with systemic therapy.  (+info)

Development of lyme arthritis in mice deficient in inducible nitric oxide synthase. (4/86)

Nitric oxide (NO) is a powerful antimicrobial agent and an important regulatory molecule of the innate immune response. To determine if NO has a role in experimental Lyme disease, arthritis-resistant DBA/2J and arthritis-susceptible C3H/HeJ mice were bred to be genetically deficient for inducible NO synthase (iNOS). Following footpad injection of Borrelia burgdorferi, arthritis was similar between iNOS-deficient and control animals regardless of their genetic background. Histologic examination and arthritis severity scores of ankles revealed no differences in arthritis development between iNOS-deficient and control animals. Despite being deficient in a key antimicrobial agent, iNOS-deficient mice had tissue levels of B. burgdorferi similar to those in control mice. Thus, NO does not have a critical role in susceptibility to Lyme arthritis through tissue damage via an overexuberant inflammatory response, nor is it required in resistance through the clearance of spirochetes from tissues.  (+info)

Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G. (5/86)

Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback to the nervous system. Peak MG tendon force amplitudes were approximately two times greater post- compared with preflight or presimulation. Adaptations in tendon force and EMG amplitude ratios indicate that the nervous system undergoes a reorganization of the recruitment patterns biased toward an increased recruitment of fast versus slow motor units and flexor versus extensor muscles. Combined, these data indicate that some details of the control of motor pools during locomotion are dependent on the persistence of Earth's gravitational environment.  (+info)

Recruitment order among motoneurons from different motor nuclei. (6/86)

Recruitment order among motoneurons from different motor nuclei. The principles by which motoneurons (MNs) innervating different multiple muscles are organized into activity are not known. Here we test the hypothesis that coactivated MNs belonging to different muscles in the decerebrate cat are recruited in accordance with the size principle, i.e., that MNs with slow conduction velocity (CV) are recruited before MNs with higher CV. We studied MN recruitment in two muscle pairs, the lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles, and the MG and posterior biceps femoris (PBF) muscles because these pairs are coactivated reliably in stretch and cutaneous reflexes, respectively. For 29/34 MG-LG pairs of MNs, the MN with lower CV was recruited first either in all trials (548/548 trials for 22 pairs) or in most trials (225/246 trials for 7 pairs), whether the MG or the LG MN in a pair was recruited first. Intertrial variability in the force thresholds of MG and LG MNs recruited by stretch was relatively low (coefficient of variation = 18% on average). Finally, punctate stimulation of the skin over the heel recruited 4/4 pairs of MG-LG MNs in order by CV. By all of these measures, recruitment order is as consistent among MNs from these two ankle muscles as it is for MNs supplying the MG muscle alone. For MG-PBF pairings, the MN with lower CV was recruited first in the majority of trials for 13/24 pairs and in reverse order for 9/24 pairs. The recruitment sequence of coactive MNs supplying the MG and PBF muscles was, therefore, random with respect to axonal conduction velocity and not organized as predicted by the size principle. Taken together, these findings demonstrate for the first time, that the size principle can extend beyond the boundaries of a single muscle but does not coordinate all coactive muscles in a limb.  (+info)

The role of an epithelial neutrophil-activating peptide-78-like protein in rat adjuvant-induced arthritis. (7/86)

The chemokine, epithelial neutrophil-activating peptide-78 (ENA-78), is a potent neutrophil chemotaxin whose expression is increased in inflamed synovial tissue and fluid in human rheumatoid arthritis compared with osteoarthritis. Since ENA-78 has been implicated in the pathogenesis of RA, we examined the expression of an ENA-78-like protein during the development of rat adjuvant-induced arthritis (AIA). Using an ELISA assay, we found increased levels of antigenic ENA-78-like protein in the sera of AIA animals compared with control normal animals by day 7 postadjuvant injection. ENA-78-like protein levels continued to increase as AIA developed. ENA-78-like protein levels in joint homogenates were increased in AIA animals later in the development of the disease, by day 18 during maximal arthritis, compared with control animals. Expression of ENA-78-like protein in both the AIA serum and joint correlated with the progression of inflammation of the joints. Anti-human ENA-78 administered before disease onset modified the severity of AIA, while administration of anti-ENA-78 after clinical onset of AIA did not modify the disease. These data support a role for an ENA-78-like protein as an important chemokine in the progression and maintenance of AIA.  (+info)

IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. (8/86)

Anti-TNF-alpha treatment of rheumatoid arthritis patients markedly suppresses inflammatory disease activity, but so far no tissue-protective effects have been reported. In contrast, blockade of IL-1 in rheumatoid arthritis patients, by an IL-1 receptor antagonist, was only moderately effective in suppressing inflammatory symptoms but appeared to reduce the rate of progression of joint destruction. We therefore used an established collagen II murine arthritis model (collagen-induced arthritis(CIA)) to study effects on joint structures of neutralization of either TNF-alpha or IL-1. Both soluble TNF binding protein and anti-IL-1 treatment ameliorated disease activity when applied shortly after onset of CIA. Serum analysis revealed that early anti-TNF-alpha treatment of CIA did not decrease the process in the cartilage, as indicated by the elevated COMP levels. In contrast, anti-IL-1 treatment of established CIA normalized COMP levels, apparently alleviating the process in the tissue. Histology of knee and ankle joints corroborated the finding and showed that cartilage and joint destruction was significantly decreased after anti-IL-1 treatment but was hardly affected by anti-TNF-alpha treatment. Radiographic analysis of knee and ankle joints revealed that bone erosions were prevented by anti-IL-1 treatment, whereas the anti-TNF-alpha-treated animals exhibited changes comparable to the controls. In line with these findings, metalloproteinase activity, visualized by VDIPEN production, was almost absent throughout the cartilage layers in anti-IL-1-treated animals, whereas massive VDIPEN appearance was found in control and sTNFbp-treated mice. These results indicate that blocking of IL-1 is a cartilage- and bone-protective therapy in destructive arthritis, whereas the TNF-alpha antagonist has little effect on tissue destruction.  (+info)