Identification of neutralizing epitopes on a European strain of swine vesicular disease virus. (1/32)

Six neutralizing monoclonal antibodies (MAbs) were used to isolate MAb neutralization-resistant (MAR) mutants from a recent European strain of swine vesicular disease virus (SVDV), ITL/9/93. Sequencing of MAR mutants identified two epitopes located at positions analogous to sites 2A (VP2) and 3B (VP3) on poliovirus (PV) which have been previously identified on a Japanese strain of SVDV. A third epitope near to the C terminus of VP1, not previously recognized on SVDV, was tentatively identified in a region analogous to site 1 of PV. A fourth epitope, located in the C-terminal region of VP3, has never before been recognized as a site of neutralization on picornaviruses. All four epitopes were predicted to be surface-exposed.  (+info)

Molecular evolution of swine vesicular disease virus. (2/32)

Phylogenetic analysis was used to examine the evolutionary relationships within a group of coxsackie B viruses that contained representatives of the major serotypes of this group and 45 isolates of swine vesicular disease virus (SVDV) from Asia and Europe. Separate analyses of sequence data from two regions of the viral genomes encoding the VP1 and 3BC genes both revealed that the SVDV belonged to a single monophyletic group which could be clearly distinguished from all other sampled coxsackieviruses. Regression analysis revealed that within the SVDV clade at least 80% of the synonymous variation in evolutionary divergence between isolates was explained by time, indicating the existence of an approximate molecular clock. Calibration of this clock according to synonymous substitutions per year indicated the date of occurrence of a common ancestor for the SVDV clade to be between 1945 and 1965.  (+info)

Immune recognition of swine vesicular disease virus structural proteins: novel antigenic regions that are not exposed in the capsid. (3/32)

Swine vesicular disease virus (SVDV) is an enterovirus of the Picornaviridae family that belongs to the coxsackievirus B group. A number of antigenic sites have been identified in SVDV by analysis of neutralizing monoclonal antibody-resistant mutants and shown to be exposed on the surface of the capsid. In this paper we have identified seven new immunodominant antigenic regions in SVDV capsid proteins by a peptide scanning method, using a panel of sera from infected pigs. When these antigenic regions were located in the capsid by using a computer-generated three-dimensional model of the virion, one was readily exposed on the surface of the virus and the remaining sites were located facing the inner side of the capsid shell, at subunit contacts, or in the interior of the subunit structure.  (+info)

The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B and by swine vesicular disease virus. (4/32)

Group B coxsackieviruses are etiologically linked to many human diseases, and cell surface receptors are postulated to play an important role in mediating their pathogenesis. The coxsackievirus adenovirus receptor (CAR) has been shown to function as a receptor for selected strains of coxsackievirus group B (CVB) serotypes 3, 4, and 5 and is postulated to serve as a receptor for all six serotypes. In this study, we demonstrate that CAR can serve as a receptor for laboratory reference strains and clinical isolates of all six CVB serotypes. Infection of CHO cells expressing human CAR results in a 1000-fold increase in CVB progeny virus titer compared to mock transfected cells. CAR was shown to be a functional receptor for swine vesicular disease virus (SVDV), as CHO-CAR cells but not CHO mock transfected controls were susceptible to SVDV infection, produced progeny SVDV, and developed cytopathic effects. Moreover, SVDV infection could be specifically blocked by monoclonal antibody to CAR (RmcB). SVDV infection of HeLa cells was also inhibited by an anti-CD55 MAb, suggesting that this virus, like some CVB, may interact with CD55 (decay accelerating factor) in addition to CAR. Finally, pretreatment of CVB or SVDV with soluble CAR effectively blocks virus infection of HeLa cell monolayers.  (+info)

Construction of a full-length infectious cDNA clone of swine vesicular disease virus strain NET/1/92 and analysis of new antigenic variants derived from it. (5/32)

The Dutch swine vesicular disease virus (SVDV) isolate NET/1/92 was one of the first isolates belonging to a new SVDV antigenic group. This strain was completely sequenced and was shown to have 93% similarity with the UKG/27/72 isolate. To enable antigenicity, replication, maturation and pathogenicity studies of NET/1/92, an infectious full-length cDNA clone, designated pSVD146, was prepared. The in vitro and in vivo biological properties of the virus derived from pSVD146 were studied by analysing antigenicity, plaque morphology, growth curves and virulence in pigs. The epitopes of newly prepared monoclonal antibodies were roughly mapped by fusion-PCR. Fine mapping of epitopes at the amino acid level was achieved by introducing single amino acid mutations in pSVD146. Two new amino acids important in epitope formation were located in VP1; one was mapped in the C-terminal end and the second is thought to be located in the H-I loop. Growth curve and plaque sizes in vitro were similar between virus derived from pSVD146 and the parent wild-type virus. In virulence studies in pigs, the lesions score, neutralization titres and the seroconversion rates were comparable between virus derived from pSVD146 and the parent strain. Since virus derived from pSVD146 had the same biological properties as the parent strain NET/1/92, the full-length infectious cDNA clone pSVD146 will be very useful in studies of the antigenicity, virulence, pathogenesis, maturation and replication of SVDV.  (+info)

The N-terminal region of the VP1 protein of swine vesicular disease virus contains a neutralization site that arises upon cell attachment and is involved in viral entry. (6/32)

The N-terminal region of VP1 of swine vesicular disease virus (SVDV) is highly antigenic in swine, despite its internal location in the capsid. Here we show that antibodies to this region can block infection and that allowing the virus to attach to cells increases this blockage significantly. The results indicate that upon binding to the cell, SVDV capsid undergoes a conformational change that is temperature independent and that exposes the N terminus of VP1. This process makes this region accessible to antibodies which block virus entry.  (+info)

Persistent infection is a rare sequel following infection of pigs with swine vesicular disease virus. (7/32)

Nine isolates from pigs persistently infected with a recent Italian isolate of swine vesicular disease (SVD) virus, ITL/9/93, were collected sequentially over 121 days and were characterized antigenically and biochemically. There was an accumulation of amino acid (aa) substitutions in the capsid proteins throughout the carrier state that could be correlated with alterations in antigenicity in virus isolates collected late stage in infection. The aa substitutions detected mainly occurred in VPI and antigenic changes were detected in late isolates both at antigenic site 1, resulting in loss of binding of Mab 4GO7, and at a closely located site which has not yet been named, recognized by Mab C29. In further experiments groups of pigs were exposed to a range of SVD viruses, but no virus was isolated beyond 16 days post infection (dpi) nor viral RNA detected beyond 42 dpi. Attempts to transfer infection to sentinel pigs introduced some time after initial infection of the original pigs were largely unsuccessful. The carrier state was established in only one out of five experimental infections of pigs with SVD virus and can therefore be considered a rare sequel toinfection with SVD virus and is of limited significance in the epidemiology of the disease.  (+info)

Crystal structure of Swine vesicular disease virus and implications for host adaptation. (8/32)

Swine vesicular disease virus (SVDV) is an Enterovirus of the family Picornaviridae that causes symptoms indistinguishable from those of foot-and-mouth disease virus. Phylogenetic studies suggest that it is a recently evolved genetic sublineage of the important human pathogen coxsackievirus B5 (CBV5), and in agreement with this, it has been shown to utilize the coxsackie and adenovirus receptor (CAR) for cell entry. The 3.0-A crystal structure of strain UK/27/72 SVDV (highly virulent) reveals the expected similarity in core structure to those of other picornaviruses, showing most similarity to the closest available structure to CBV5, that of coxsackievirus B3 (CBV3). Features that help to cement together and rigidify the protein subunits are extended in this virus, perhaps explaining its extreme tolerance of environmental factors. Using the large number of capsid sequences available for both SVDV and CBV5, we have mapped the amino acid substitutions that may have occurred during the supposed adaptation of SVDV to a new host onto the structure of SVDV and a model of the SVDV/CAR complex generated by reference to the cryo-electron microscopy-visualized complex of CBV3 and CAR. The changes fall into three clusters as follows: one lines the fivefold pore, a second maps to the CAR-binding site and partially overlaps the site for decay accelerating factor (DAF) to bind to echovirus 7 (ECHO7), and the third lies close to the fivefold axis, where the low-density lipoprotein receptor binds to the minor group of rhinoviruses. Later changes in SVDV (post-1971) map to the first two clusters and may, by optimizing recognition of a pig CAR and/or DAF homologue, have improved the adaptation of the virus to pigs.  (+info)