Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. (1/189)

Respiratory chain dysfunction has been identified in several neurodegenerative disorders. In Friedreich's ataxia (FA) and Huntington's disease (HD), where the respective mutations are in nuclear genes encoding non-respiratory chain mitochondrial proteins, the defects in oxidative phosphorylation are clearly secondary. In Parkinson's disease (PD) the situation is less clear, with some evidence for a primary role of mitochondrial DNA in at least a proportion of patients. The pattern of the respiratory chain defect may provide some clue to its cause; in PD there appears to be a selective complex I deficiency; in HD and FA the deficiencies are most severe in complex II/III with a less severe defect in complex IV. Aconitase activity in HD and FA is severely decreased in brain and muscle, respectively, but appears to be normal in PD brain. Free radical generation is thought to be of importance in both HD and FA, via excitotoxicity in HD and abnormal iron handling in FA. The oxidative damage observed in PD may be secondary to the mitochondrial defect. Whatever the cause(s) and sequence of events, respiratory chain deficiencies appear to play an important role in the pathogenesis of neurodegeneration. The mitochondrial abnormalities induced may converge on the function of the mitochondrion in apoptosis. This mode of cell death is thought to play an important role in neurodegenerative diseases and it is tempting to speculate that the observed mitochondrial defects in PD, HD and FA result directly in apoptotic cell death, or in the lowering of a cell's threshold to undergo apoptosis. Clarifying the role of mitochondria in pathogenesis may provide opportunities for the development of treatments designed to reverse or prevent neurodegeneration.  (+info)

MR imaging and proton MR spectroscopy in adult Krabbe disease. (2/189)

We present the MR imaging findings in four patients (two pairs of siblings from two unrelated families) with adult Krabbe disease. In the first family, clinical presentation mimicked familial spastic paraplegia. Their MR images showed selective, increased signal intensity on T2-weighted sequences along the corticospinal tracts, most prominently in the proband and barely detectable in her brother. Proton MR spectroscopy showed increased choline and myo-inositol in the affected white matter. In the second family, the clinical presentation differed in that the signs of pyramidal tract involvement were asymmetrical, with concomitant asymmetry on MR images in one. In adults, Krabbe disease may present on MR imaging with selective pyramidal fiber involvement.  (+info)

Hereditary spastic paraplegia caused by mutations in the SPG4 gene. (3/189)

Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterised by progressive spasticity of the lower limbs. The SPG4 locus at 2p21-p22 accounts for 40-50% of all AD-HSP families. The SPG4 gene was recently identified. It is ubiquitously expressed in adult and foetal tissues and encodes spastin, an ATPase of the AAA family. We have now identified four novel SPG4 mutations in German AD-HSP families, including one large family for which anticipation had been proposed. Mutations include one frame-shift and one missense mutation, both affecting the Walker motif B. Two further mutations affect two donor splice sites in introns 12 and 16, respectively. RT-PCR analysis of both donor splice site mutations revealed exon skipping and reduced stability of aberrantly spliced SPG4 mRNA. All mutations are predicted to cause loss of functional protein. In conclusion, we confirm in German families that SPG4 mutations cause AD-HSP. Our data suggest that SPG4 mutations exert their dominant effect not by gain of function but by haploinsufficiency. If a threshold level of spastin were critical for axonal preservation, such threshold dosage effects might explain the variable expressivity and incomplete penetrance of SPG4-linked AD-HSP.  (+info)

A refined physical and transcriptional map of the SPG9 locus on 10q23.3-q24.2. (4/189)

Hereditary spastic paraplegia (HSP) is a genetically heterogeneous disorder characterised by progressive spasticity of the lower limbs. Beside 'pure' forms of HSP, 'complicated' forms are reported, where spasticity occurs associated with additional symptoms. We recently described an Italian family with a complicated dominant form of HSP (SPG9) and we mapped the gene responsible to 10q23.3-q24.2, in a 12cM interval between markers D10S564 and D10S603. The phenotypic manifestations in our family are reminiscent of those already described in a smaller British pedigree. We typed individuals from this British family using markers located in the SPG9 critical interval and haplotype reconstruction showed the disorder co-segregating with SPG9. To characterise the SPG9 region better, we constructed a contig of 22 YACs, assigned it to 18 polymorphic markers and positioned 54 ESTs. Furthermore, we searched for ESTs containing a trinucleotide repeat sequence, since anticipation of symptoms was reported in both families. Finally, analysis of a muscle biopsy specimen from one patient was normal, suggesting that, contrary to SPG7, mitochondrial disturbance could not be a primary feature of SPG9.  (+info)

Genotype-phenotype correlation in inherited brain myelination defects due to proteolipid protein gene mutations. Clinical European Network on Brain Dysmyelinating Disease. (5/189)

Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2) are X-linked developmental defects of myelin formation affecting the central nervous system (CNS). They differ clinically in the onset and severity of the motor disability but both are allelic to the proteolipid protein gene (PLP), which encodes the principal protein components of CNS myelin, PLP and its spliced isoform, DM20. We investigated 52 PMD and 28 SPG families without large PLP duplications or deletions by genomic PCR amplification and sequencing of the PLP gene. We identified 29 and 4 abnormalities respectively. Patients with PLP mutations presented a large range of disease severity, with a continuum between severe forms of PMD, without motor development, to pure forms of SPG. Clinical severity was found to be correlated with the nature of the mutation, suggesting a distinct strategy for detection of PLP point mutations between severe PMD, mild PMD and SPG. Single amino-acid changes in highly conserved regions of the DM20 protein caused the most severe forms of PMD. Substitutions of less conserved amino acids, truncations, absence of the protein and PLP-specific mutations caused the milder forms of PMD and SPG. Therefore, the interactions and stability of the mutated proteins has a major effect on the severity of PLP-related diseases.  (+info)

Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. (6/189)

Pure hereditary spastic paraplegia (SPG) type 4 is the most common form of autosomal dominant hereditary SPG, a neurodegenerative disease characterized primarily by hyperreflexia and progressive spasticity of the lower limbs. It is caused by mutations in the gene encoding spastin, a member of the AAA family of ATPases. We have screened the spastin gene for mutations in 15 families consistent with linkage to the spastin gene locus, SPG4, and have identified 11 mutations, 10 of which are novel. Five of the mutations identified are in noninvariant splice-junction sequences. Reverse transcription-PCR analysis of mRNA from patients shows that each of these five mutations results in aberrant splicing. One mutation was found to be "leaky," or partially penetrant; that is, the mutant allele produced both mutant (skipped exon) and wild-type (full-length) transcripts. This phenomenon was reproduced in in vitro splicing experiments, with a minigene splicing-vector construct only in the context of the endogenous splice junctions flanking the splice junctions of the skipped exon. In the absence of endogenous splice junctions, only mutant transcript was detected. The existence of at least one leaky mutation suggests that relatively small differences in the level of wild-type spastin expression can have significant functional consequences. This may account, at least in part, for the wide ranges in age at onset, symptom severity, and rate of symptom progression that have been reported to occur both among and within families with SPG linked to SPG4. In addition, these results suggest caution in the interpretation of data solely obtained with minigene constructs to study the effects of sequence variation on splicing. The lack of full genomic sequence context in these constructs can mask important functional consequences of the mutation.  (+info)

The Silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. (7/189)

The hereditary spastic paraplegias (HSPs) are a complex group of neurodegenerative disorders characterized by lower-limb spasticity and weakness. Silver syndrome (SS) is a particularly disabling dominantly inherited form of HSP, complicated by amyotrophy of the hand muscles. Having excluded the multiple known HSP loci, we undertook a genomewide screen for linkage of SS in one large multigenerational family, which revealed evidence for linkage of the SS locus, which we have designated "SPG17," to chromosome 11q12-q14. Haplotype construction and analysis of recombination events permitted the minimal interval defining SPG17 to be refined to approximately 13 cM, flanked by markers D11S1765 and D11S4136. SS in a second family was not linked to SPG17, demonstrating further genetic heterogeneity in HSP, even within this clinically distinct subtype.  (+info)

Survey of human mitochondrial diseases using new genomic/proteomic tools. (8/189)

BACKGROUND: We have constructed Bayesian prior-based, amino-acid sequence profiles for the complete yeast mitochondrial proteome and used them to develop methods for identifying and characterizing the context of protein mutations that give rise to human mitochondrial diseases. (Bayesian priors are conditional probabilities that allow the estimation of the likelihood of an event - such as an amino-acid substitution - on the basis of prior occurrences of similar events.) Because these profiles can assemble sets of taxonomically very diverse homologs, they enable identification of the structurally and/or functionally most critical sites in the proteins on the basis of the degree of sequence conservation. These profiles can also find distant homologs with determined three-dimensional structures that aid in the interpretation of effects of missense mutations. RESULTS: This survey reports such an analysis for 15 missense mutations, one insertion and three deletions involved in Leber's hereditary optic neuropathy, Leigh syndrome, mitochondrial neurogastrointestinal encephalomyopathy, Mohr-Tranebjaerg syndrome, iron-storage disorders related to Friedreich's ataxia, and hereditary spastic paraplegia. We present structural correlations for seven of the mutations. CONCLUSIONS: Of the 19 mutations analyzed, 14 involved changes in very highly conserved parts of the affected proteins. Five out of seven structural correlations provided reasonable explanations for the malfunctions. As additional genetic and structural data become available, this methodology can be extended. It has the potential for assisting in identifying new disease-related genes. Furthermore, profiles with structural homologs can generate mechanistic hypotheses concerning the underlying biochemical processes - and why they break down as a result of the mutations.  (+info)