99mTc-labeled vasoactive intestinal peptide receptor agonist: functional studies. (1/299)

Vasoactive intestinal peptide (VIP) is a naturally occurring 28-amino acid peptide with a wide range of biological activities. Recent reports suggest that VIP receptors are expressed on a variety of malignant tumor cells and that the receptor density is higher than for somatostatin. Our aims were to label VIP with 99mTc--a generator-produced, inexpensive radionuclide that possesses ideal characteristics for scintigraphic imaging--and to evaluate 99mTc-VIP for bioactivity and its ability to detect experimental tumors. METHODS: VIP28 was modified at the carboxy terminus by the addition of four amino acids that provided an N4 configuration for a strong chelation of 99mTc. To eliminate steric hindrance, 4-aminobutyric acid (Aba) was used as a spacer. VIP28 was labeled with 1251, which served as a control. Biological activity of the modified VIP28 agonist (TP3654) was examined in vitro using a cell-binding assay and an opossum internal anal sphincter (IAS) smooth muscle relaxivity assay. Tissue distribution studies were performed at 4 and 24 h after injection, and receptor-blocking assays were also performed in nude mice bearing human colorectal cancer LS174T. Blood clearance was examined in normal Sprague-Dawley rats. RESULTS: The yield of 99mTc-TP3654 was quantitative, and the yields of 125I-VIP and 1251-TP3654 were >90%. All in vitro data strongly suggested that the biological activity of 99mTc-TP3654 agonist was equivalent to that of VIP28. As the time after injection increased, radioactivity in all tissues decreased, except in the receptor-enriched tumor (P = 0.84) and in the lungs (P = 0.78). The tumor uptake (0.23 percentage injected dose per gram of tissue [%ID/g]) was several-fold higher than 125I-VIP (0.06 %ID/g) at 24 h after injection in the similar system. In mice treated with unlabeled VIP or TP3654, the uptake of 99mTc-TP3654 decreased in all VIP receptor-rich tissues except the kidneys. The blood clearance was biphasic; the alpha half-time was 5 min and the beta half-time was approximately 120 min. CONCLUSION: VIP28 was modified and successfully labeled with 99mTc. The results of all in vitro examinations indicated that the biological activity of TP3654 was equivalent to that of native VIP28 and tumor binding was receptor specific.  (+info)

Actions of vasoactive intestinal peptide on the rat adrenal zona glomerulosa. (2/299)

Previous studies, by this group and others, have shown that vasoactive intestinal peptide (VIP) stimulates aldosterone secretion, and that the actions of VIP on aldosterone secretion by the rat adrenal cortex are blocked by beta adrenergic antagonists, suggesting that VIP may act by the local release of catecholamines. The present studies were designed to test this hypothesis further, by measuring catecholamine release by adrenal capsular tissue in response to VIP stimulation. Using intact capsular tissue it was found that VIP caused a dose-dependent increase in aldosterone secretion, with a concomitant increase in both adrenaline and noradrenaline release. The effects of VIP on aldosterone secretion were inhibited by atenolol, a beta1 adrenergic antagonist, but not by ICI-118,551, a beta2 adrenergic antagonist. Binding studies were carried out to investigate VIP receptors. It was found that adrenal zona glomerulosa tissue from control rats contained specific VIP binding sites (Bmax 853+/-101 fmol/mg protein; Kd 2.26+/-0.45 nmol/l). VIP binding was not displaced by ACTH, angiotensin II or by either of the beta adrenergic antagonists. The response to VIP in adrenals obtained from rats fed a low sodium diet was also investigated. Previous studies have found that adrenals from animals on a low sodium diet exhibit increased responsiveness to VIP. Specific VIP binding sites were identified, although the concentration or affinity of binding sites in the low sodium group was not significantly different from the controls. In the low sodium group VIP was found to increase catecholamine release to the same extent as in the control group, however, in contrast to the control group, the adrenal response to VIP was not altered by adrenergic antagonists in the low sodium group. These data provide strong support for the hypothesis that VIP acts by the local release of catecholamines in adrenal zona glomerulosa tissue in normal animals. It does not appear that VIP acts through the same mechanism in animals maintained on a low sodium diet. The mechanism by which VIP stimulates aldosterone in this group remains to be determined.  (+info)

Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kappa B and IFN regulatory factor 1 activation. (3/299)

High-output nitric oxide (NO) production from activated macrophages, resulting from the induction of inducible NO synthase (iNOS) expression, represents a major mechanism for macrophage cytotoxicity against pathogens. However, despite its beneficial role in host defense, sustained high-output NO production was also implicated in a variety of acute inflammatory diseases and autoimmune diseases. Therefore, the down-regulation of iNOS expression during an inflammatory process plays a significant physiological role. This study examines the role of two immunomodulatory neuropeptides, the vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), on NO production by LPS-, IFN-gamma-, and LPS/IFN-gamma-stimulated peritoneal macrophages and the Raw 264.7 cell line. Both VIP and PACAP inhibit NO production in a dose- and time-dependent manner by reducing iNOS expression at protein and mRNA level. VPAC1, the type 1 VIP receptor, which is constitutively expressed in macrophages, and to a lesser degree VPAC2, the type 2 VIP receptor, which is induced upon macrophage activation, mediate the effect of VIP/PACAP. VIP/PACAP inhibit iNOS expression and activity both in vivo and in vitro. Two transduction pathways appear to be involved, a cAMP-dependent pathway that preferentially inhibits IFN regulatory factor-1 transactivation and a cAMP-independent pathway that blocks NF-kappa B binding to the iNOS promoter. The down-regulation of iNOS expression, together with previously reported inhibitory effects on the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12, and the stimulation of the anti-inflammatory IL-10, define VIP and PACAP as "macrophage deactivating factors" with significant physiological relevance.  (+info)

Immunolocalization of muscarinic and VIP receptor subtypes and their role in stimulating goblet cell secretion. (4/299)

PURPOSE: To determine the subtypes of cholinergic muscarinic receptors and receptors for vasoactive intestinal peptide (VIP) present in rat conjunctival goblet cells and whether cholinergic agonists and VIP stimulate goblet cell secretion. METHODS: Immunofluorescence studies were performed using antibodies against the m1, m2, and m3 muscarinic receptor subtypes and VIP receptors 1 and 2 (VIPR1 and VIPR2). The lectin Ulex europeus agglutinin I was used to measure glycoconjugate secretion, the index of secretion, from goblet cells in an enzyme-linked lectin assay. In this assay, pieces of conjunctiva were placed on filter paper and incubated for 15 to 120 minutes, with or without increasing concentrations of the cholinergic agonist carbachol or VIP. The muscarinic antagonist atropine and the muscarinic receptor-subtype-selective antagonists pirenzepine (M1), gallamine (M2), and 4-4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride (4-DAMP mustard; M3) were incubated with carbachol to determine specificity of receptor activation. RESULTS: Immunoreactivity to M2 and M3 receptors was found on goblet cell membranes subjacent to the secretory granules. Immunoreactivity to M1 receptor was not on goblet cells but was on the stratitfied squamous cells. Immunoreactivity to VIPR2 was found on goblet cells with a localization similar to that of the M2 and M3 receptors. VIPR1 was not found on goblet cells or on the stratified squamous cells. Carbachol and VIP induced a time- and concentration-dependent stimulation of glycoconjugate secretion. Carbachol, at 10(-4) M, induced a threefold increase in glycoconjugate secretion, which was completely inhibited by atropine (10(-5) M). Carbachol-induced secretion was inhibited 54% +/- 8% by pirenzepine (10(-5) M), 69% +/- 14% by gallamine (10(-5) M), and 72% +/- 11% by 4-DAMP mustard (10(-5) M). A twofold increase in glycoconjugate secretion was obtained with VIP at 10(-8) M. CONCLUSIONS: Cholinergic agonists, through M2 and/or M3 muscarinic receptors, and VIP, through VIPR2, regulate conjunctival goblet cell secretion, suggesting that goblet cell secretion in vivo is under the control of parasympathetic nerves.  (+info)

Alternate coupling of receptors to Gs and Gi in pancreatic and submandibular gland cells. (5/299)

Many Gs-coupled receptors can activate both cAMP and Ca2+ signaling pathways. Three mechanisms for dual activation have been proposed. One is receptor coupling to both Gs and G15 (a Gq class heterotrimeric G protein) to initiate independent signaling cascades that elevate intracellular levels of cAMP and Ca+2, respectively. The other two mechanisms involve cAMP-dependent protein kinase-mediated activation of phospholipase Cbeta either directly or by switching receptor coupling from Gs to Gi. These mechanisms were primarily inferred from studies with transfected cell lines. In native cells we found that two Gs-coupled receptors (the vasoactive intestinal peptide and beta-adrenergic receptors) in pancreatic acinar and submandibular gland duct cells, respectively, evoke a Ca2+ signal by a mechanism involving both Gs and Gi. This inference was based on the inhibitory action of antibodies specific for Galphas, Galphai, and phosphatidylinositol 4,5-bisphosphate, pertussis toxin, RGS4, a fragment of beta-adrenergic receptor kinase and inhibitors of cAMP-dependent protein kinase. By contrast, Ca2+ signaling evoked by Gs-coupled receptor agonists was not blocked by Gq class-specific antibodies and was unaffected in Galpha15 -/- knockout mice. We conclude that sequential activation of Gs and Gi, mediated by cAMP-dependent protein kinase, may represent a general mechanism in native cells for dual stimulation of signaling pathways by Gs-coupled receptors.  (+info)

Expression, pharmacological, and functional evidence for PACAP/VIP receptors in human lung. (6/299)

Pituitary adenylate cyclase-activating peptide (PACAP) type 1 (PAC(1)) and common PACAP/vasoactive intestinal peptide (VIP) type 1 and 2 (VPAC(1) and VPAC(2), respectively) receptors were detected in the human lung by RT-PCR. The proteins were identified by immunoblotting at 72, 67, and 68 kDa, respectively. One class of PACAP receptors was defined from (125)I-labeled PACAP-27 binding experiments (dissociation constant = 5.2 nM; maximum binding capacity = 5.2 pmol/mg protein) with a specificity: PACAP-27 approximately VIP > helodermin approximately peptide histidine-methionine (PHM) >> secretin. Two classes of VIP receptors were established with (125)I-VIP (dissociation constants of 5.4 and 197 nM) with a specificity: VIP approximately helodermin approximately PACAP-27 >> PHM >> secretin. PACAP-27 and VIP were equipotent on adenylyl cyclase stimulation (EC(50) = 1.6 nM), whereas other peptides showed lower potency (helodermin > PHM >> secretin). PACAP/VIP antagonists supported that PACAP-27 acts in the human lung through either specific receptors or common PACAP/VIP receptors. The present results are the first demonstration of the presence of PAC(1) receptors and extend our knowledge of common PACAP/VIP receptors in the human lung.  (+info)

Structure of the human VIPR2 gene for vasoactive intestinal peptide receptor type 2. (7/299)

The VPAC(2) (vasoactive intestinal peptide (VIP)(2)) receptor is a seven-transmembrane spanning G protein-coupled receptor which responds similarly to VIP and pituitary adenylate cyclase activating polypeptide (PACAP) in stimulating cAMP production. Recently, we reported the localisation of the human VPAC(2) receptor gene (VIPR2) to chromosome 7q36.3 (Mackay, M. et al. (1996) Genomics 37, 345-353). Here, we describe the characterisation of the VIPR2 gene structure and promoter region. The VIPR2 gene is encoded by 13 exons, the initiator codon of the 438 amino acid open reading frame is located in exon 1 and the termination signal and a poly-adenylation signal sequence are located in exon 13. The 5' untranslated region extends 187 bp upstream of the initiator codon and is extremely GC-rich (80%). The poly-adenylation signal is located 2416 bp downstream of the stop codon. Intron sizes range from 68 bp (intron 11) to 45 kb (intron 4) and the human gene spans 117 kb.  (+info)

Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. (8/299)

Pituitary adenylate cyclase-activating polypeptides (PACAP) have potent regulatory and neurotrophic activities on superior cervical ganglion (SCG) sympathetic neurons with pharmacological profiles consistent for the PACAP-selective PAC(1) receptor. Multiple PAC(1) receptor isoforms are suggested to determine differential peptide potency and receptor coupling to multiple intracellular signaling pathways. The current studies examined rat SCG PAC(1) receptor splice variant expression and coupling to intracellular signaling pathways mediating PACAP-stimulated peptide release. PAC(1) receptor mRNA was localized in over 90% of SCG neurons, which correlated with the cells expressing receptor protein. The neurons expressed the PAC(1)(short)HOP1 receptor but not VIP/PACAP-nonselective VPAC(1) receptors; low VPAC(2) receptor mRNA levels were restricted to ganglionic nonneuronal cells. PACAP27 and PACAP38 potently and efficaciously stimulated both cAMP and inositol phosphate production; inhibition of phospholipase C augmented PACAP-stimulated cAMP production, but inhibition of adenylyl cyclase did not alter stimulated inositol phosphate production. Phospholipase C inhibition blunted neuron peptide release, suggesting that the phosphatidylinositol pathway was a prominent component of the secretory response. These studies demonstrate preferential sympathetic neuron expression of PACAP-selective receptor variants contributing to regulation of autonomic function.  (+info)