Interleukin-8 receptor modulates IgE production and B-cell expansion and trafficking in allergen-induced pulmonary inflammation. (1/385)

We examined the role of the interleukin-8 (IL-8) receptor in a murine model of allergen-induced pulmonary inflammation using mice with a targeted deletion of the murine IL-8 receptor homologue (IL-8r-/-). Wild-type (Wt) and IL-8r-/- mice were systemically immunized to ovalbumin (OVA) and were exposed with either single or multiple challenge of aerosolized phosphate-buffered saline (OVA/PBS) or OVA (OVA/OVA). Analysis of cells recovered from bronchoalveolar lavage (BAL) revealed a diminished recruitment of neutrophils to the airway lumen after single challenge in IL-8r-/- mice compared with Wt mice, whereas multiply challenged IL-8r-/- mice had increased B cells and fewer neutrophils compared with Wt mice. Both Wt and IL-8r-/- OVA/OVA mice recruited similar numbers of eosinophils to the BAL fluid and exhibited comparable degrees of pulmonary inflammation histologically. Both total and OVA-specific IgE levels were greater in multiply challenged IL-8r-/- OVA/OVA mice than in Wt mice. Both the IL-8r-/- OVA/OVA and OVA/PBS mice were significantly less responsive to methacholine than their respective Wt groups, but both Wt and IL-8r mice showed similar degrees of enhancement after multiple allergen challenge. The data demonstrate that the IL-8r modulates IgE production, airway responsiveness, and the composition of the cells (B cells and neutrophils) recruited to the airway lumen in response to antigen.  (+info)

A functional granulocyte colony-stimulating factor receptor is required for normal chemoattractant-induced neutrophil activation. (2/385)

Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor that is widely used to treat neutropenia. In addition to stimulating polymorphonuclear neutrophil (PMN) production, G-CSF may have significant effects on PMN function. Because G-CSF receptor (G-CSFR)-deficient mice do not have the expected neutrophilia after administration of human interleukin-8 (IL-8), we examined the effect of the loss of G-CSFR on IL-8-stimulated PMN function. Compared with wild-type PMNs, PMNs isolated from G-CSFR-deficient mice demonstrated markedly decreased chemotaxis to IL-8. PMN emigration into the skin of G-CSFR-deficient mice in response to IL-8 was also impaired. Significant chemotaxis defects were also seen in response to N-formyl-methionyl-leucyl-phenylalanine, zymosan-activated serum, or macrophage inflammatory protein-2. The defective chemotactic response to IL-8 does not appear to be due to impaired chemoattractant receptor function, as the number of IL-8 receptors and chemoattractant-induced calcium influx, actin polymerization, and release of gelatinase B were comparable to those of wild-type PMNs. Chemoattractant-induced adhesion of G-CSFR-deficient PMNs was significantly impaired, suggesting a defect in beta2-integrin activation. Collectively, these data demonstrate that selective defects in PMN activation are present in G-CSFR-deficient mice and indicate that G-CSF plays an important role in regulating PMN chemokine responsiveness.  (+info)

Regulation of IL-8RA (CXCR1) expression in polymorphonuclear leukocytes by hypoxia/reoxygenation. (3/385)

Interleukin-8 (IL-8) is an important mediator of neutrophil (PMN) function and the type A IL-8 receptor (IL-8RA) mediates these pro-inflammatory signals. Hypoxia or hypoxia/reoxygenation (H/R) affects the production of IL-8, but no data is available regarding its effect on IL-8RA expression. The purpose of this study was to determine the effects of hypoxia and/or H/R on the expression of IL-8RA in PMN. We demonstrated that IL-8RA mRNA levels were similar under normoxic and hypoxic conditions but H/R resulted in a significant reduction in mRNA expression between 30 and 60 min. IL-8RA protein also decreased with reoxygenation of whole blood, which was altered by the addition of specific antioxidants. Therefore, H/R appears to attenuate the effect of IL-8 by down-regulating IL-8RA in PMN. These data show that changes in oxygen tension within the wound site not only affect the expression of inflammatory cytokines, but also control their actions by regulating their receptors.  (+info)

Metalloproteinases are involved in lipopolysaccharide- and tumor necrosis factor-alpha-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. (4/385)

The neutrophil-specific G-protein-coupled chemokine receptors, CXCR1 and CXCR2, bind with high affinity to the potent chemoattractant interleukin-8 (IL-8). The mechanisms of IL-8 receptor regulation are not well defined, although previous studies have suggested a process of ligand-promoted internalization as a putative regulatory pathway. Herein, we provide evidence for two distinct processes of CXCR1 and CXCR2 regulation. Confocal microscopy data showed a redistribution of CXCR1 expression from the cell surface of neutrophils to internal compartments after stimulation with IL-8, whereas stimulation with bacterial lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) did not induce CXCR1 internalization but instead mediated a significant loss of membrane-proximal CXCR1 staining intensity. To investigate whether proteolytic cleavage was the mechanism responsible for LPS- and TNF-alpha-induced downmodulation of IL-8 receptors, we tested a panel of proteinase inhibitors. The downmodulation of CXCR1 and CXCR2 by LPS and TNF-alpha was most dramatically inhibited by metalloproteinase inhibitors; 1, 10-phenanthroline and EDTA significantly attenuated LPS- and TNF-alpha-induced loss of CXCR1 and CXCR2 cell surface expression. Metalloproteinase inhibitors also blocked the release of CXCR1 cleavage fragments into the cell supernatants of LPS- and TNF-alpha-stimulated neutrophils. In addition, while treatment of neutrophils with LPS and TNF-alpha inhibited IL-8 receptor-mediated calcium mobilization and IL-8-directed neutrophil chemotaxis, both 1, 10-phenanthroline and EDTA blocked these inhibitory processes. In contrast, metalloproteinase inhibitors did not affect IL-8-mediated downmodulation of CXCR1 and CXCR2 cell surface expression or receptor signaling. Thus, these findings may provide further insight into the mechanisms of leukocyte regulation during immunologic and inflammatory responses.  (+info)

Two distinct cytokines released from a human aminoacyl-tRNA synthetase. (5/385)

Aminoacyl-tRNA synthetases catalyze aminoacylation of transfer RNAs (tRNAs). It is shown that human tyrosyl-tRNA synthetase can be split into two fragments with distinct cytokine activities. The endothelial monocyte-activating polypeptide II-like carboxy-terminal domain has potent leukocyte and monocyte chemotaxis activity and stimulates production of myeloperoxidase, tumor necrosis factor-alpha, and tissue factor. The catalytic amino-terminal domain binds to the interleukin-8 type A receptor and functions as an interleukin-8-like cytokine. Under apoptotic conditions in cell culture, the full-length enzyme is secreted, and the two cytokine activities can be generated by leukocyte elastase, an extracellular protease. Secretion of this tRNA synthetase may contribute to apoptosis both by arresting translation and producing needed cytokines.  (+info)

Signalling by CXC-chemokine receptors 1 and 2 expressed in CHO cells: a comparison of calcium mobilization, inhibition of adenylyl cyclase and stimulation of GTPgammaS binding induced by IL-8 and GROalpha. (6/385)

The effect of interleukin-8 (IL-8) and growth-related oncogene alpha (GROalpha) on [35S]-guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding, forskolin-stimulated cyclic AMP accumulation and cytosolic calcium concentration were determined in recombinant CHO cells expressing HA-tagged CXC-chemokine receptors 1 and 2 (CXCR1 and CXCR2). Radioligand binding assays confirmed that the binding profiles of the recombinant receptors were similar to those of the native proteins. IL-8 displaced [125I]-IL-8 binding to CXCR1 and CXCR2 with pKi values of 8.89+/-0.05 and 9.27+/-0.03, respectively. GROalpha, a selective CXCR2 ligand, had a pKi value of 9.66+/-0.39 at CXCR2 but a pKi>8 at CXCR1. Calcium mobilization experiments were also consistent with previous reports on native receptors. Activation of both receptors resulted in stimulation of [35S]GTPgammaS binding and inhibition of adenylyl cyclase. A comparison of the functional data at CXCRI showed that a similar potency order (IL-8> >GROalpha) was obtained in all three assays. However, at CXCR2 whilst the potency orders for calcium mobilization and inhibition of adenylyl cyclase were similar (IL-8 > or = GROalpha), the order was reversed for stimulation of [35S]GTPgammaS binding (GROalpha > IL-8). All of the functional responses at both receptors were inhibited by pertussis toxin (PTX), suggesting coupling to a Gi/Go protein. However, the calcium mobilization induced by IL-8 at CXCR1 was not fully inhibited by PTX, suggesting an interaction with a G-protein of the Gq family. Our results with pertussis toxin also suggested that, in the [35S]GTPgammaS binding assay, CXCR1 displays some constitutive activity. Thus, we have characterized the binding and several functional responses at HA-tagged CXCRs 1 and 2 and have shown that their pharmacology agrees well with that of the native receptors. We also have preliminary evidence that CXCR1 displays constitutive activity in our cell line and that CXCR2 may traffic between different PTX sensitive G-proteins.  (+info)

Heterologous desensitization of IL-8-mediated chemotaxis in human neutrophils by a cell-binding fragment of fibronectin. (7/385)

In this study, we have explored the mechanism for the desensitization of IL-8-mediated neutrophil chemotaxis by a cell-binding fragment of fibronectin (120-kDa FN). Preincubation of neutrophil suspensions with the 120-kDa FN fragment resulted in a heterologous desensitization of IL-8-mediated chemotaxis while not affecting neutrophil chemotaxis to either fMLP or zymosan-activated serum. Preincubation of neutrophils with the beta1-integrin-activating antibody (TS2/16) mimicked the effects of the 120-kDa FN fragment while preincubating neutrophils with the beta1-integrin blocking antibody (mAb13) abrogated the inhibitory effects of the 120-kDa FN fragment on IL-8-mediated chemotaxis. Furthermore, we also demonstrated that the 120-kDa FN fragment did not inhibit chemotaxis to the CXC chemokine MGSA/GROalpha which interacts with high affinity to the IL-8 receptor B (CXCR2). By in vivo phosphorylation of neutrophils and probing lysates with an anti-CXCR1 antibody, we demonstrated that the addition of the cell-binding fragment of fibronectin resulted in a time-dependent phosphorylation of CXCR1. These findings suggest that the mechanism of heterologous desensitization of IL-8-mediated chemotaxis following ligation of FN-dependent integrins is the result of phosphorylation of the CXCR1 receptor.  (+info)

Differential mechanisms of recognition and activation of interleukin-8 receptor subtypes. (8/385)

We have probed an epitope sequence (His18-Pro19-Lys20-Phe21) in interleukin-8 (IL-8) by site-directed mutagenesis. This work shows that single and double Ala substitutions of His18 and Phe21 in IL-8 reduced up to 77-fold the binding affinity to IL-8 receptor subtypes A (CXCR1) and B (CXCR2) and to the Duffy antigen. These Ala mutants triggered neutrophil degranulation and induced calcium responses mediated by CXCR1 and CXCR2. Single Asp or Ser substitutions, H18D, F21D, F21S, and double substitutions, H18A/F21D, H18A/F21S, and H18D/F21D, reduced up to 431-fold the binding affinity to CXCR1, CXCR2, and the Duffy antigen. Interestingly, double mutants with charged residue substitutions failed to trigger degranulation or to induce wild-type calcium responses mediated by CXCR1. Except for the H18A and F21A mutants, all other IL-8 mutants failed to induce superoxide production in neutrophils. This study demonstrates that IL-8 recognizes and activates CXCR1, CXCR2, and the Duffy antigen by distinct mechanisms.  (+info)