(1/3892) Why are there so few resistance-associated mutations in insecticide target genes?

The genes encoding the three major targets of conventional insecticides are: Rdl, which encodes a gamma-aminobutyric acid receptor subunit (RDL); para, which encodes a voltage-gated sodium channel (PARA); and Ace, which encodes insect acetylcholinesterase (AChE). Interestingly, despite the complexity of the encoded receptors or enzymes, very few amino acid residues are replaced in different resistant insects: one within RDL, two within PARA and three or more within AChE. Here we examine the possible reasons underlying this extreme conservation by looking at the aspects of receptor and/or enzyme function that may constrain replacements to such a limited number of residues.  (+info)

(2/3892) Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells.

Patch-clamp recordings were performed from stellate and basket cells in rat cerebellar slices. Under somatic voltage clamp, short depolarizing pulses were applied to elicit action potentials in the axon. After the action potential, a bicuculline- and Cd2+-sensitive current transient was observed. A similar response was obtained when eliciting axonal firing by extracellular stimulation. With an isotonic internal Cl- solution, the peak amplitude of this current varied linearly with the holding potential, yielding an extrapolated reversal potential of -20 to 0 mV. Unlike synaptic or autaptic GABAergic currents obtained in the same preparation, the current transient had a slow rise-time and a low variability between trials. This current was blocked when 10 mM BAPTA was included in the recording solution. In some experiments, the current transient elicited axonal action potentials. The current transient was reliably observed in animals aged 12-15 d, with a mean amplitude of 82 pA at -70 mV, but was small and rare in the age group 29-49 d. Numerical simulations could account for all properties of the current transient by assuming that an action potential activates a distributed GABAergic conductance in the axon. The actual conductance is probably restricted to release sites, with an estimated mean presynaptic current response of 10 pA per site (-70 mV, age 12-15 d). We conclude that in developing rats, stellate and basket cell axons have a high density of GABAergic autoreceptors and that a sizable fraction of the corresponding current can be measured from the soma.  (+info)

(3/3892) Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol.

Aberrant cell proliferation and increased invasive and metastatic behavior are hallmarks of the advancement of breast cancer. Numerous studies implicate a role for cholesterol in the mechanisms underlying cell proliferation and cancer progression. The peripheral-type benzodiazepine receptor (PBR) is an Mr 18,000 protein primarily localized to the mitochondria. PBR mediates cholesterol transport across the mitochondrial membranes in steroidogenic cells. A role for PBR in the regulation of tumor cell proliferation has also been shown. In this study, we examined the expression, characteristics, localization, and function of PBR in a battery of human breast cancer cell lines differing in their invasive and chemotactic potential as well as in several human tissue biopsies. Expression of PBR ligand binding and mRNA was dramatically increased in the highly aggressive cell lines, such as MDA-231, relative to nonaggressive cell lines, such as MCF-7. PBR was also found to be expressed at high levels in aggressive metastatic human breast tumor biopsies compared with normal breast tissues. Subcellular localization with both antibodies and a fluorescent PBR drug ligand revealed that PBR from the MDA-231 cell line as well as from aggressive metastatic human breast tumor biopsies localized primarily in and around the nucleus. This localization is in direct contrast to the largely cytoplasmic localization seen in MCF-7 cells, normal breast tissue, and to the typical mitochondrial localization seen in mouse tumor Leydig cells. Pharmacological characterization of the receptor and partial nucleotide sequencing of PBR cDNA revealed that the MDA-231 PBR is similar, although not identical, to previously described PBR. Addition of high affinity PBR drug ligands to MDA-231 cells increased the incorporation of bromodeoxyuridine into the cells in a dose-dependent manner, suggesting a role for PBR in the regulation of MDA-231 cell proliferation. Cholesterol uptake into isolated MDA-231 nuclei was found to be 30% greater than into MCF-7 nuclei. High-affinity PBR drug ligands regulated the levels of cholesterol present in MDA-231 nuclei but not in MCF-7. In addition, the PBR-dependent MDA-231 cell proliferation was found to highly correlate (r = -0.99) with the PBR-mediated changes in nuclear membrane cholesterol levels. In conclusion, these data suggest that PBR expression, nuclear localization, and PBR-mediated cholesterol transport into the nucleus are involved in human breast cancer cell proliferation and aggressive phenotype expression, thus participating in the advancement of the disease.  (+info)

(4/3892) Synaptic activation of GABAA receptors induces neuronal uptake of Ca2+ in adult rat hippocampal slices.

Synaptically evoked transmembrane movements of Ca2+ in the adult CNS have almost exclusively been attributed to activation of glutamate receptor channels and the consequent triggering of voltage-gated calcium channels (VGCCs). Using microelectrodes for measuring free extracellular Ca2+ ([Ca2+]o) and extracellular space (ECS) volume, we show here for the first time that synaptic stimulation of gamma-aminobutyric acid-A (GABAA) receptors can result in a decrease in [Ca2+]o in adult rat hippocampal slices. High-frequency stimulation (100-200 Hz, 0.4-0.5 s) applied in stratum radiatum close (+info)

(5/3892) Retinal input induces three firing patterns in neurons of the superficial superior colliculus of neonatal rats.

By using an in vitro isolated brain stem preparation, we recorded extracellular responses to electrical stimulation of the optic tract (OT) from 71 neurons in the superficial superior colliculus (SC) of neonatal rats (P1-13). At postnatal day 1 (P1), all tested neurons (n = 10) already received excitatory input from the retina. Sixty-nine (97%) superficial SC neurons of neonatal rats showed three response patterns to OT stimulation, which depended on stimulus intensity. A weak stimulus evoked only one spike that was caused by activation of non-N-methyl-D-aspartate (NMDA) glutamate receptors. A moderate stimulus elicited a short train (<250 ms) of spikes, which was induced by activation of both NMDA and non-NMDA receptors. A strong stimulus gave rise to a long train (>300 ms) of spikes, which was associated with additional activation of L-type high-threshold calcium channels. The long train firing pattern could also be induced either by temporal summation of retinal inputs or by blocking gamma-aminobutyric acid-A receptors. Because retinal ganglion cells show synchronous bursting activity before eye opening at P14, the retinotectal inputs appear to be sufficient to activate L-type calcium channels in the absence of pattern vision. Therefore activation of L-type calcium channels is likely to be an important source for calcium influx into SC neurons in neonatal rats.  (+info)

(6/3892) Postnatal development of hippocampal dentate granule cell gamma-aminobutyric acidA receptor pharmacological properties.

Postnatal development of hippocampal dentate granule cell gamma-aminobutyric acidA (GABAA) receptor pharmacological properties was studied. Granule cells were acutely isolated from hippocampi of 7- to 14- and 45- to 52-day-old rats, and whole cell patch-clamp recordings were obtained. The sensitivity of GABAA receptors to GABA and modulation of GABAA receptor currents by benzodiazepines (BZ), zinc, furosemide, and loreclezole was studied. Multiple changes in the pharmacological properties of dentate granule-cell GABAA receptors occurred during the first 52 days of postnatal development: GABA-evoked maximal current increased with postnatal age; GABAA receptors changed from BZ type 3 in young rats to BZ type 1 in adult rats; furosemide and zinc inhibited GABAA receptor currents in young rats but not in adult rats; the fraction of cells that expressed loreclezole-sensitive GABAA receptors increased with postnatal age. These findings suggest that dentate granule cells in young and adult animals express pharmacologically distinct GABAA receptors and that the postnatal development of these receptors is prolonged, lasting at least 45 days. Comparison with the previously reported pharmacological properties of GABAA receptors on dentate granule cells acutely isolated from hippocampi of 28- to 35-day-old rats suggests that receptors expressed at that age have properties intermediate between young and adult rats.  (+info)

(7/3892) Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors.

The gamma-aminobutyric acid type A (GABAA) receptor is the predominant Cl- channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.  (+info)

(8/3892) Regional differences in the inhibition of mouse in vivo [3H]Ro 15-1788 binding reflect selectivity for alpha 1 versus alpha 2 and alpha 3 subunit-containing GABAA receptors.

The benzodiazepines flunitrazepam, diazepam, and Ro 15-1788 and the beta-carboline DMCM bind with equivalent affinity to the benzodiazepine binding site of GABAA receptors containing different alpha subunits (i.e., alpha 1, alpha 2, alpha 3, or alpha 5); whereas, the triazolopyridazine CL 218,872 and imidazopyridine zolpidem have higher affinity for alpha 1 subunit-containing GABAA receptors. In the present study, the in vivo binding of [3H]Ro 15-1788 in mouse cerebellum and spinal cord was used to establish the occupancy of the benzodiazepine binding site of GABAA receptors containing primarily alpha 1 and alpha 2/alpha 3 subunits, respectively. Thus, the nonselective compounds flunitrazepam, diazepam, and DMCM all produced a similar inhibition of binding in cerebellum and spinal cord (respective ID50 values of 0.2 to 0.3 mg/kg, 2 mg/kg, and 10 mg/kg i.p.); whereas, the alpha 1 selective compounds CL 218,872 and zolpidem were more potent at inhibiting [3H]Ro 15-1788 binding in the cerebellum (ID50 values 4.5 mg/kg and 10 mg/kg i.p.) compared to the spinal cord (ID50 values 12 mg/kg and > 30 mg/kg i.p.). Thus, the reduction of in vivo f[3H]Ro 15-1788 binding in tissues containing alpha 1 and alpha 2/alpha 3 receptor populations reflects the in vitro affinities of subtype selective compounds and should help to interpret the behavioral profile of such compounds.  (+info)