Changes in Rous sarcoma virus RNA secondary structure near the primer binding site upon tRNATrp primer annealing. (1/98)

Predicted secondary-structure elements encompassing the primer binding site in the 5' untranslated region of Rous sarcoma virus (RSV) RNA play an integral role in multiple viral replications steps including reverse transcription, DNA integration, and RNA packaging (A. Aiyar, D. Cobrinik, Z. Ge, H. J. Kung, and J. Leis, J. Virol. 66:2464-2472, 1992; D. Cobrinik, A. Aiyar, Z. Ge, M. Katzman, H. Huang, and J. Leis, J. Virol. 65:3864-3872, 1991; J. T. Miller, Z. Ge, S. Morris, K. Das, and J. Leis, J. Virol. 71:7648-7656, 1997). These elements include the U5-Leader stem, U5-IR stem-loop, and U5-TPsiC interaction region. Limited digestion of the 5' untranslated region of wild-type and mutant RSV RNAs with structure- and/or sequence-specific RNases detects the presence of the U5-Leader stem and the U5-IR stem-loop. When a tRNATrp primer is annealed to wild-type RNAs in vitro, limited nuclease mapping indicates that the U5-IR stem becomes partially unwound. This is not observed when mutant RNAs with altered U5-IR stem-loop structures are substituted for wild-type RNAs. The U5-Leader stem also becomes destabilized when the tRNA primer is annealed to either wild-type or mutant RNA fragments. Nuclease mapping studies of tRNATrp, as well as the viral RNA, indicate that the U5-TPsiC helix does form in vitro upon primer annealing. Collectively, these data suggest that the various structural elements near the RSV primer binding site undergo significant changes during the process of primer annealing.  (+info)

Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. (2/98)

Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs ensure both accurate RNA recognition and the efficient catalysis of aminoacylation. The effects of tRNA(Trp)variants on the aminoacylation reaction catalyzed by wild-type Escherichia coli tryptophanyl-tRNA synthe-tase (TrpRS) have now been investigated by stopped-flow fluorimetry, which allowed a pre-steady-state analysis to be undertaken. This showed that tRNA(Trp)identity has some effect on the ability of tRNA to bind the reaction intermediate TrpRS-tryptophanyl-adenylate, but predominantly affects the rate at which trypto-phan is transferred from TrpRS-tryptophanyl adenylate to tRNA. Use of the binding ( K (tRNA)) and rate constants ( k (4)) to determine the energetic levels of the various species in the aminoacylation reaction showed a difference of approximately 2 kcal mol(-1)in the barrier to transition state formation compared to wild-type for both tRNA(Trp)A-->C73 and. These results directly show that tRNA identity contributes to the degree of complementarity to the transition state for tRNA charging in the active site of an aminoacyl-tRNA synthetase:aminoacyl-adenylate:tRNA complex.  (+info)

Identity elements in bovine tRNA(Trp) required for the specific stimulation of gelonin, a plant ribosome-inactivating protein. (3/98)

Ribosome-inactivating proteins (RIPs) are RNA-N-glycosidases widely present in plants that depurinate RNA in ribosomes at a specific universally conserved position, A4324, in the rat 28S rRNA. A small group of RIPs (cofactor-dependent RIPs) require ATP and tRNA to reach maximal activity on isolated ribosomes. Among cofactor-dependent RIPs, gelonin is specifically and uniquely stimulated by tRNA(Trp). The active species are avian (chicken) and mammalian (beef, rat, and rabbit) tRNA(Trp), whereas yeast tRNA(Trp) is completely devoid of stimulating activity. In the present article, bovine and yeast tRNA(Trp) with unmodified bases were prepared by assembly of the corresponding genes from synthetic oligonucleotides followed by PCR and T7 RNA polymerase transcription of the amplified products. The two synthetic tRNAs were fully active (bovine) or inactive (yeast) as the wild-type tRNAs. Construction of chimeric tRNA(Trp) transcripts identified the following bovine nucleotides as recognition elements for gelonin-stimulating activity: G26 and bp G12-C23 in the D arm and G57, A59, and bp G51-C63 and U52-A62 in the T arm. Among single-stranded nucleotides, A59 has a prominent role, but full expression of the gelonin-stimulating activity requires an extensive cooperation between nucleotides in both arms.  (+info)

C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. (4/98)

All mitochondrial tRNAs in kinetoplastid protists are encoded in the nucleus and imported into the organelle. The tRNA(Trp)(CCA) can decode the standard UGG tryptophan codon but can not decode the mitochondrial UGA tryptophan codon. We show that the mitochondrial tRNA(Trp) undergoes a specific C to U nucleotide modification in the first position of the anticodon, which allows decoding of mitochondrial UGA codons as tryptophan. Functional evidence for the absence of a UGA suppressor tRNA in the cytosol, using a reporter gene, was also obtained, which is consistent with a mitochondrial localization of this editing event. Leishmania cells have dealt with the problem of a lack of expression within the organelle of this non-universal tRNA by compartmentalizing an editing activity that modifies the anticodon of the imported tRNA.  (+info)

NMR studies of Bacillus subtilis tRNA(Trp) hyperexpressed in Escherichia coli. Assignment of imino proton signals and determination of thermal stability. (5/98)

15N-Labeled Bacillus subtilis tRNA(Trp) wild type and a series of mutants were hyperexpressed in Escherichia coli and purified for NMR studies with the use of two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear single quantum correlation (HSQC) and three-dimensional NOESY-HSQC techniques. These made possible chemical shift assignments of imino protons and determination of the thermal stability of the tRNA(Trp) molecules. Almost all of the imino protons in the helical regions and the tertiary base pairs were assigned, except three imino protons of the AU base pairs whose peaks were not clearly observed. Several base triplets found in the crystal structure of tRNA were observed in the present study as well. These studies also revealed two components of tRNA(Trp), which could not be separated by high pressure liquid chromatography, corresponding to s(4)U and U at position 8 of the tRNA(Trp), as indicated by two different sets of peaks for the TpsiC and D arms. The modification at position 8 altered the local conformation of the core region of the tRNA. Thermal unfolding experiments showed that the unfolding process is cooperative in the presence of a high concentration of magnesium ions and that the component corresponding to the s(4)U8 is more stable than the U8 component, thus providing evidence that the thiolation of U8 stabilizes the tertiary structure of tRNA.  (+info)

Characterization of an unusual tRNA-like sequence found inserted in a Neurospora retroplasmid. (6/98)

We characterized an unusual tRNA-like sequence that had been found inserted in suppressive variants of the mitochondrial retroplasmid of Neurospora intermedia strain Varkud. We previously identified two forms of the tRNA-like sequence, one of 64 nt (TRL-64) and the other of 78 nt (TRL-78) containing a 14-nt internal insertion in the anticodon stem at a position expected for a nuclear tRNA intron. Here, we show that TRL-78 is encoded in Varkud mitochondrial (mt)DNA within a 7 kb sequence that is not present in Neurospora crassa wild-type 74 A mtDNA. This 7-kb insertion also contains a perfectly duplicated tRNA(Trp)gene, segments of several mitochondrial plasmids and numerous GC-rich palindromic sequences that are repeated elsewhere in the mtDNA. The mtDNA-encoded copy of TRL-78 is transcribed and apparently undergoes 5'- and 3'-end processing and 3' nucleotide addition by tRNA nucleotidyl transferase to yield a discrete tRNA-sized molecule. However, the 14 nt intron-like sequence in TRL-78, which is missing in the TRL-64 form, is not spliced detectably in vivo or in vitro. Our results show that TRL-78 is an unusual tRNA-like species that could be incorporated into suppressive retroplasmids by the same reverse transcription mechanism used to incorporate mt tRNAs. The tRNA-like sequence may have been derived from an intron-containing nuclear tRNA gene or it may serve some function, like mtRNA. Our results suggest that mt tRNAs or tRNA-like species may be integrated into mtDNA via reverse transcription, analogous to SINE elements in animal cells.  (+info)

Characterization of an unusual tRNA-like sequence found inserted in a Neurospora retroplasmid. (7/98)

We characterized an unusual tRNA-like sequence that had been found inserted in suppressive variants of the mitochondrial retroplasmid of Neurospora intermedia strain Varkud. We previously identified two forms of the tRNA-like sequence, one of 64 nt (TRL-64)and the other of 78 nt (TRL-78) containing a 14-nt internal insertion in the anticodon stem at a position expected for a nuclear tRNA intron. Here, we show that TRL-78 is encoded in Varkud mitochondrial (mt)DNA within a 7 kb sequence that is not present in Neurospora crassa wild-type 74A mtDNA. This 7-kb insertion also contains a perfectly duplicated tRNA(Trp)gene, segments of several mitochondrial plasmids and numerous GC-rich pallindromic sequences that are repeated elsewhere in the mtDNA. The mtDNA-encoded copy of TRL-78 is transcribed and apparently undergoes 5'- and 3'-end processing and 3' nucleotide addition by tRNA nucleotidyl transferase to yield a discrete tRNA-sized molecule. However, the 14 nt intron-like sequence in TRL-78, which is missing in the TRL-64 form, is not spliced detectably in vivo or in vitro. Our results show that TRL-78 is an unusual tRNA-like species that could be incorporated into suppressive retroplasmids by the same reverse transcription mechanism used to incorporate mt tRNAs. The tRNA-like sequence may have been derived from an intron-containing nuclear tRNA gene or it may serve some function, like tmRNA. Our results suggest that mtRNAs or tRNA-like species may be integrated into mtDNA via reverse transcription, analogous to SINE elements in animal cells.  (+info)

Nucleotides U28-A42 and A37 in unmodified yeast tRNA(Trp) as negative identity elements for bovine tryptophanyl-tRNA synthetase. (8/98)

Wild-type bovine and yeast tRNA(Trp) are efficiently aminoacylated by tryptophanyl-tRNA synthetase both from beef and from yeast. Upon loss of modified bases in the synthetic transcripts, mammalian tRNA(Trp) retains the double recognition by the two synthetases, while yeast tRNA(Trp) loses its substrate properties for the bovine enzyme and is recognised only by the cognate synthetase. By testing chimeric bovine-yeast transcripts with tryptophanyl-tRNA synthetase purified from beef pancreas, the nucleotides responsible for the loss of charging of the synthetic yeast transcript have been localised in the anticodon arm. A complete loss of charging akin to that observed with the yeast transcript requires substitution in the bovine backbone of G37 in the anticodon loop with yeast A37 and of C28-G42 in the anticodon stem with yeast U28-A42. Since A37 does not prevent aminoacylation of the wild-type yeast tRNA(Trp) by the beef enzyme, a negative combination apparently emerges in the synthetic transcript after unmasking of U28 by loss of pseudourydilation.  (+info)