Roles of threonine 192 and asparagine 382 in agonist and antagonist interactions with M1 muscarinic receptors. (1/244)

Conserved amino acids, such as Thr in transmembrane domains (TM) V and Asn in TM VI of muscarinic receptors, may be important in agonist binding and/or receptor activation. In order to determine the functional roles of Thr192 and Asn382 in human M1 receptors in ligand binding and receptor activation processes, we created and characterized mutant receptors with Thr192 or Asn382 substituted by Ala. HM1 wild-type (WT) and mutant receptors [HM1(Thr192Ala) and HM1(Asn382Ala)] were stably expressed in A9 L cells. The Kd values for 3H-(R)-QNB and Ki values for other classical muscarinic antagonists were similar at HM1(WT) and HM1(Thr192Ala) mutant receptors, yet higher at HM1(Asn382Ala) mutant receptors. Carbachol exhibited lower potency and efficacy in stimulating PI hydrolysis via HM1(Thr192Ala) mutant receptors, and intermediate agonist activity at the HM1(Asn382Ala) mutant receptors. The Asn382 residue in TM VI but not the Thr192 residue in TM V of the human M1 receptor appears to participate directly in antagonist binding. Both Thr192 and Asn382 residues are involved differentially in agonist binding and/or receptor activation processes, yet the Asn382 residue is less important than Thr192 in agonist activation of M1 receptors. Molecular modelling studies indicate that substitution of Thr192 or Asn382 results in the loss of hydrogen-bond interactions and changes in the agonist binding mode associated with an increase in hydrophobic interactions between ligand and receptor.  (+info)

Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. (2/244)

1. This study describes the pharmacological comparison of the muscarinic partial agonists sabcomeline, xanomeline and milameline at human cloned muscarinic receptor subtypes (hM1-5). 2. Radioligand binding studies at the hM1-5 muscarinic receptor subtypes were compared with functional studies using microphysiometry using carbachol as the standard full agonist. 3. In binding assays none of the compounds studied displayed preferential affinity for the M1,3,4 or M5 subtypes although carbachol was less potent at hM1 than hM3,4,5. 4. In functional studies, all of the compounds studied displayed similar levels of efficacy across the muscarinic receptors with the exception of M3, where there was a large apparent receptor reserve and the compounds behaved essentially as full agonists. 5. Sabcomeline was the most potent agonist in functional studies but also showed the lowest efficacy. In terms of potency, xanomeline showed some selectivity for M1 over M2 receptors and milameline showed some selectivity for M2 over M1 receptors. 6. These results show the value of microphysiometry in being able to compare receptor pharmacology across subtypes irrespective of the signal transduction pathway. 7. None of the partial agonists showed functional selectivity for M1 receptors, or indeed any muscarinic receptor, in the present study.  (+info)

Effects of mitoxantrone on action potential and membrane currents in isolated cardiac myocytes. (3/244)

1. The effects of mitoxantrone (MTO), an anticancer drug, on the membrane electrical properties of cardiac myocytes were investigated using the whole-cell clamp technique. 2. In isolated guinea-pig ventricular myocytes, 30 microM MTO induced a time-dependent prolongation of action potential duration (APD) which was occasionally accompanied by early afterdepolarizations. APD prolongation was preserved in the presence of 10 microM tetrodotoxin and showed reverse rate-dependence. 3. Both the inward rectifier K+ current (I(KI)) and the delayed rectifier K+ current (I(K)) of guinea-pig ventricular myocytes were significantly depressed by 30 microM MTO. The rapidly activating component of I(k) (I(Kr)) seemed to be preferentially blocked by MTO. The transient outward current was not affected by MTO in rat ventricular myocytes. 4. Thirty microM MTO had no direct effect on the L-type Ca2+ current (I(Ca(L))), but reversed the inhibitory effect of 1 microM carbamylcholine but not the A1-adenosine receptor agonist (-)-N6-phenylisopropyladenosine (1 microM) on I(Ca(L)) enhanced by 50 nM isoprenaline in guinea-pig ventricular myocytes. In guinea-pig atrial mycotyes, 30 microM MTO inhibited by 93% the muscarinic receptor gated K+ current (I(K,ACh)) evoked by 1 microM carbamylcholine, whereas I(K,ACh) elicited by 100 microM GTPgammaS, a nonhydrolysable GTP analogue, was only decreased by 12%. 5. The specific binding of [3H]QNB, a muscarinic receptor ligand, to human atrial membranes was concentration-dependently displaced by MTO (1-1000 microM). 6. In conclusion, MTO blocks cardiac muscarinic receptors and prolongs APD by inhibition of I(KI) and I(Kr). The occasionally observed early afterdepolarizations may signify a potential cardiac hazard of the drug.  (+info)

Alterations of muscarinic acetylcholine receptor subtypes in diffuse lewy body disease: relation to Alzheimer's disease. (4/244)

OBJECTIVES: Dementia associated with Lewy bodies in cortical and subcortical areas is classified as dementia of the non-Alzheimer type and termed diffuse Lewy body disease (DLBD). The generic term "dementia with Lewy bodies (DLB)" was proposed in the international workshop on Lewy body dementia to include the similar disorders presenting Lewy bodies. In DLB, a lower level of choline acetyltransferase (ChAT) activity in the neocortex was found compared with that in Alzheimer's disease. The purpose of the present study was to determine the total amount of muscarinic acetylcholine receptors (mAChRs) and relative proportion of each subtype (m1-m4) of mAChRs in the frontal and temporal cortex of seven DLBD and 11 Alzheimer's disease necropsied brains. METHODS: A [(3)H]quinuclidinyl benzilate (QNB) binding assay and an immunoprecipitation assay using subtype-specific antibodies were performed. Each antibody was raised against fusion proteins containing peptides corresponding to the third intracellular (i3) loops of the respective mAChR subtype. RESULTS: The total amounts of mAChRs were significantly lower in the preparations of temporal cortices from DLBD and Alzheimer's disease than in those from dead controls (seven cases). In both diseases, the proportion of the m3 receptor in the frontal cortex was significantly increased and that of the m4 receptor in the temporal cortex was significantly decreased compared with the control specimens. The proportions of the m1 and m2 subtypes were significantly different in the temporal cortex. The proportion of the m1 receptor was significantly greater in the DLBD brains, whereas that of the m2 receptor was significantly greater in the Alzheimer's disease brains than in the controls. CONCLUSIONS: The m1 receptor is the major subtype in the cerebral cortex, and m2 is known to be present at presynaptic terminals. The higher proportions of m1 in DLBD and m2 in Alzheimer's disease suggest that the manner of degeneration in the cholinergic system is different between the diseases. It is hypothesised that a severe depletion of presynaptic cholinergic projective neurons causes the upregulation of m1 receptor in the temporal cortex in DLBD.  (+info)

Alanine-scanning mutagenesis of transmembrane domain 6 of the M(1) muscarinic acetylcholine receptor suggests that Tyr381 plays key roles in receptor function. (5/244)

Transmembrane domain 6 of the muscarinic acetylcholine (ACh) receptors is important in ligand binding and in the conformational transitions of the receptor but the roles of individual residues are poorly understood. We have carried out a systematic alanine-scanning mutagenesis study on residues Tyr381 to Val387 within the binding domain of the M(1) muscarinic ACh receptor. The seven mutations were then analyzed to define the effects on receptor expression, agonist and antagonist binding, and signaling efficacy. Tyr381Ala produced a 40-fold reduction in ACh affinity and a 50-fold reduction in ACh-signaling efficacy. Leu386Ala had similar but smaller effects. Asn382Ala caused the largest inhibition of antagonist binding. The roles of the hydroxyl group and benzene ring of Tyr381 were probed further by comparative analysis of the Tyr381Phe and Tyr381Ala mutants using three series of ligands: ACh analogs, azanorbornane- and quinuclidine-based ligands, and atropine analogs. These data suggested that the hydroxyl group of Tyr381 is primarily involved in forming hydrogen bond interactions with the oxygen atoms present in the side chain of ACh. We propose that this interaction is established in the ground state and preserved in the activated state of the receptor. In contrast, the Tyr381 benzene ring may form a cation-pi interaction with the positively charged head group of ACh that contributes to the activated state of the receptor but not the ground state. However, the hydroxyl group and benzene ring of Tyr381 both participate in interactions with azanorbornane- and quinuclidine-based ligands and atropine analogs in the ground state as well as the activated state of the receptor.  (+info)

Changes in rat brain cholinesterase activity and muscarinic receptor density during and after repeated oral exposure to chlorpyrifos in early postnatal development. (6/244)

The effects of repeated oral exposures to the organophosphorus insecticide chlorpyrifos (CPS) on brain muscarinic receptor densities, together with cholinesterase (ChE) activity, were studied in early postnatal rats. Initially, the effects on esterases from lactational exposure to CPS were investigated in young rats by administering CPS (100, 150, or 200 mg/kg subcutaneously in corn oil) to dams 1 day postpartum, yielding a significant body burden of CPS in the dams for possible excretion in the milk. Brain ChE inhibition in pups was less severe than in dams, whereas liver carboxylesterase (CbxE) inhibition in pups was at the same level as in dams. Because of the limited brain ChE inhibition obtained following lactation, pups were exposed to CPS directly by gavage, using 3 dosing regimens to yield a dose response. The rats were gavaged with CPS in corn oil on alternate days from postnatal day (PND) 1 through PND 21. Rats in the low-dosage group received 11 treatments at 3 mg/kg, those in the medium-dosage group received 3 treatments at 3 mg/kg and 8 at 6 mg/kg, and those in the high dosage group received 3 treatments at 3 mg/kg, 4 at 6 mg/kg, and 4 at 12 mg/kg. ChE activity in brain homogenates were inhibited significantly by 29% and 63% in the low- and high-dosage groups, respectively, on PND 22 and by 17% in the high dosage group on PND 40. Muscarinic receptor densities in brain synaptosomes were reduced using 3H-N-methylscopolamine (NMS) and 3H-quinuclidinyl benzilate (QNB) as ligands, with the effects more prominent from 3H-NMS. Densities of both ligands recovered to the control level several days after terminating treatment. The results indicate that pups are apparently exposed to only limited amounts of chlorpyrifos and/or its oxon through the milk when dams are exposed to extremely high chlorpyrifos levels. In addition, repeated direct oral exposures of early postnatal rats to CPS will result in persistent brain ChE inhibition and will transiently reduce muscarinic receptor density.  (+info)

Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro. (7/244)

The function of the bladder urothelium in modulating contractile responses of the underlying detrusor smooth muscle to muscarinic stimulation has been examined in the pig bladder. Saturation curves for [3H]-QNB binding demonstrated a greater muscarinic receptor density in the urothelium than in the detrusor smooth muscle. The presence of an intact urothelium on isolated bladder strips inhibited contractions induced by carbachol but not KCl. Contractions of a urothelium-denuded muscle strip were inhibited in the presence of a second bladder strip with an intact urothelium, but not if the second strip was denuded. The urothelium-induced inhibition of contractions was not prevented in the presence of L-NOARG, methylene blue, indomethacin, propranolol, suramin, TEA or apamin. The data suggest the presence of a diffusable, urothelium-derived inhibitory factor, which could not be identified but appears to be neither nitric oxide, a cyclo-oxygenase product, a catecholamine, adenosine, GABA nor an EDHF sensitive to apamin.  (+info)

Evidence for a tandem two-site model of ligand binding to muscarinic acetylcholine receptors. (8/244)

After short preincubations with N-[(3)H]methylscopolamine ([(3)H]NMS) or R(-)-[(3)H]quinuclidinyl benzilate ([(3)H]QNB), radioligand dissociation from muscarinic M(1) receptors in Chinese hamster ovary cell membranes was fast, monoexponential, and independent of the concentration of unlabeled NMS or QNB added to reveal dissociation. After long preincubations, the dissociation was slow, not monoexponential, and inversely related to the concentration of the unlabeled ligand. Apparently, the unlabeled ligand becomes able to associate with the receptor simultaneously with the already bound radioligand if the preincubation lasts for a long period, and to hinder radioligand dissociation. When the membranes were preincubated with [(3)H]NMS and then exposed to benzilylcholine mustard (covalently binding specific ligand), [(3)H]NMS dissociation was blocked in wild-type receptors, but not in mutated (D99N) M(1) receptors. Covalently binding [(3)H]propylbenzilylcholine mustard detected substantially more binding sites than [(3)H]NMS. The observations support a model in which the receptor binding domain has two tandemly arranged subsites for classical ligands, a peripheral one and a central one. Ligands bind to the peripheral subsite first (binding with lower affinity) and translocate to the central subsite (binding with higher affinity). The peripheral subsite of M(1) receptors may include Asp-99. Experimental data on [(3)H]NMS and [(3)H]QNB association and dissociation perfectly agree with the predictions of the tandem two-site model.  (+info)