The FERM protein Epb4.1l5 is required for organization of the neural plate and for the epithelial-mesenchymal transition at the primitive streak of the mouse embryo. (1/53)

During early mouse development, a single-layered epithelium is transformed into the three germ layers that are the basis of the embryonic body plan. Here we describe an ENU-induced mutation, limulus (lulu), which disrupts gastrulation and the organization of all three embryonic germ layers. Positional cloning and analysis of additional alleles show that lulu is a null allele of the FERM-domain gene erythrocyte protein band 4.1-like 5 (Epb4.1l5). During gastrulation, some cells in lulu mutants are trapped in the primitive streak at an intermediate stage of the epithelial-mesenchymal transition; as a result, the embryos have very little paraxial mesoderm. Epithelial layers of the later lulu embryo are also disrupted: definitive endoderm is specified but does not form a gut tube, and the neural plate is broad and forms ectopic folds rather than closing to make the neural tube. In contrast to zebrafish and Drosophila, in which orthologs of Epb4.1l5 control the apical localization and activity of Crumbs proteins, mouse Crumbs proteins are localized normally to the apical surface of the lulu mutant epiblast and neural plate. However, the defects in both the lulu primitive streak and neural plate are associated with disruption of the normal organization of the actin cytoskeleton. We propose that mouse Lulu (Epb4.1l5) helps anchor the actin-myosin contractile machinery to the membrane to allow the dynamic rearrangements of epithelia that mediate embryonic morphogenesis.  (+info)

Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. (2/53)

We have utilized a serum- and stromal cell-free "spin embryoid body (EB)" differentiation system to investigate the roles of four growth factors, bone morphogenetic protein 4 (BMP4), vascular endothelial growth factor (VEGF), stem cell factor (SCF), and basic fibroblast growth factor (FGF2), singly and in combination, on the generation of hematopoietic cells from human embryonic stem cells (HESCs). Of the four factors, only BMP4 induced expression of genes that signaled the emergence of the primitive streak-like population required for the subsequent development of hematopoietic mesoderm. In addition, BMP4 initiated the expression of genes marking hematopoietic mesoderm and supported the generation of hematopoietic progenitor cells at a low frequency. However, the appearance of robust numbers of hematopoietic colony forming cells and their mature progeny required the inclusion of VEGF. Finally, the combination of BMP4, VEGF, SCF, and FGF2 further enhanced the total yield of hematopoietic cells. These data demonstrate the utility of the serum-free spin EB system in dissecting the roles of specific growth factors required for the directed differentiation of HESCs toward the hematopoietic lineage.  (+info)

Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. (3/53)

In the developing mouse, vascular endothelial cell (EC) and hematopoietic cell (HPC) lineages are two initial cell lineages that diverge from mesodermal cells, which have been roughly subdivided into three subtypes according to their geographical location: the organizer, embryonic mesoderm in the primitive streak, and extraembryonic mesoderm during gastrulation. Although the initial progenitors that become the two lineages appear in both vascular endothelial growth factor receptor 2(+) (VEGFR2(+)) lateral and extraembryonic mesoderm, little is known about the underlying molecular events that regulate the derivation of ECs and HPCs. Here, we describe an experimental system consisting of two types of embryonic stem cell lines capable of distinguishing between organizer and the middle section of the primitive streak region. Using this system, we were able to establish a defined culture condition that can separately induce distinct types of mesoderm. Although we were able to differentiate ECs from all mesoderm subsets, however, the potential of HPCs was restricted to the VEGFR2(+) cells derived from primitive streak-type mesodermal cells. We also show that the culture condition for the progenitors of primitive erythrocytes is separated from that for the progenitors of definitive erythrocytes. These results suggest the dominant role of extrinsic regulation during diversification of mesoderm.  (+info)

Cessation of gastrulation is mediated by suppression of epithelial-mesenchymal transition at the ventral ectodermal ridge. (4/53)

In the gastrula stage embryo, the epiblast migrates toward the primitive streak and ingresses through the primitive groove. Subsequently, the ingressing epiblast cells undergo epithelial-mesenchymal transition (EMT) and differentiate into the definitive endoderm and mesoderm during gastrulation. However, the developmental mechanisms at the end of gastrulation have not yet been elucidated. Histological and genetic analyses of the ventral ectodermal ridge (VER), a derivative of the primitive streak, were performed using chick and mouse embryos. The analyses showed a continued cell movement resembling gastrulation associated with EMT during the early tailbud stage of both embryos. Such gastrulation-like cell movement was gradually attenuated by the absence of EMT during tail development. The kinetics of the expression pattern of noggin (Nog) and basal membrane degradation adjacent to the chick and the mouse VER indicated a correlation between the temporal and/or spatial expression of Nog and the presence of EMT in the VER. Furthermore, Nog overexpression suppressed EMT and arrested ingressive cell movement in the chick VER. Mice mutant in noggin displayed dysregulation of EMT with continued ingressive cell movement. These indicate that the inhibition of Bmp signaling by temporal and/or spatial Nog expression suppresses EMT and leads to the cessation of the ingressive cell movement from the VER at the end of gastrulation.  (+info)

Multicellular rosette formation during cell ingression in the avian primitive streak. (5/53)

Cell movements are a fundamental feature during the development of multi-cellular organisms. In amniote gastrulation, cells ingress through the primitive streak, which identifies the anterior-posterior axis of the embryo. We investigated the cytoskeletal architecture during these morphogenetic processes and characterized microtubule organisation in whole chick embryos. This revealed the distribution of cells with polarized and radial microtubule (MT) arrays across different regions of the embryo. Cells in the epiblast usually displayed radial MT-arrays, while the majority of cells in the primitive streak had polarized MT-arrays. Within the primitive streak, many cells organized into groups and were arranged in rosette-like structures with a distinct centre characterized by an accumulation of actin. Extended confocal microscopy and three-dimensional image reconstruction identified tips of polarized cells that were protruding from the plane of rosettes, usually from the centre. We propose that organization into higher order structures facilitates cell ingression during gastrulation.  (+info)

Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd. (6/53)

 (+info)

Developmental biology: cell intercalation one step beyond. (7/53)

 (+info)

Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. (8/53)

 (+info)