alpha1-adrenergic receptor subtypes in human peripheral blood lymphocytes. (1/1153)

We investigated the expression of alpha1-adrenergic receptor subtypes in intact human peripheral blood lymphocytes using reverse transcription-polymerase chain reaction (RT-PCR) and radioligand binding assay techniques combined with antibodies against the three subtypes of alpha1-adrenergic receptors (alpha1A, alpha1B, and alpha1D). RT-PCR amplified in peripheral blood lymphocytes a 348-bp alpha1A-adrenergic receptor fragment, a 689-bp alpha1B-adrenergic receptor fragment, and a 540-bp alpha1D-adrenergic receptor fragment. Radioligand binding assay with [3H]prazosin as radioligand revealed a high-affinity binding with a dissociation constant value of 0. 65+/-0.05 nmol/L and a maximum density of binding sites of 175. 3+/-20.5 fmol/10(6) cells. The pharmacological profile of [3H]prazosin binding to human peripheral blood lymphocytes was consistent with the labeling of alpha1-adrenergic receptors. Antibodies against alpha1A-, alpha1B-, and alpha1D-receptor subtypes decreased [3H]prazosin binding to a different extent. This indicates that human peripheral blood lymphocytes express the three alpha1-adrenergic receptor subtypes. Of the three different alpha1-adrenergic receptor subtypes, the alpha1B is the most represented and the alpha1D, the least. Future studies should clarify the functional relevance of alpha1-adrenergic receptors expressed by peripheral blood lymphocytes. The identification of these sites may represent a step for evaluating whether they represent a marker of alpha1-adrenergic receptors in cardiovascular disorders or for assessing responses to drug treatment on these receptors.  (+info)

Neural modulation of cephalexin intestinal absorption through the di- and tripeptide brush border transporter of rat jejunum in vivo. (2/1153)

Intestinal absorption of beta-lactamine antibiotics (e.g., cefixime and cephalexin) has been shown to proceed through the dipeptide carrier system. In a previous study, nifedipine (NFP), an L-type calcium channel blocker, enhanced the absorption of cefixime in vivo but not in vitro, and it was suggested that neural mechanisms might be involved in the effect of NFP. The aim of the present study was to assess the involvement of the nervous system on the intestinal absorption of cephalexin (CFX). To investigate this, we used a single-pass jejunal perfusion technique in rats. NFP and diltiazem enhanced approximately 2-fold the plasma levels of CFX in treated rats versus untreated controls. NFP also increased approximately 2-fold the CFX level in portal plasma and increased urinary excretion of CFX, thus indicating that CFX did effectively increase CFX intestinal absorption. Perfusing high concentrations of dipeptides in the jejunal lumen competitively reduced CFX absorption and inhibited the enhancement of CFX absorption produced by NFP. Hexamethonium and lidocaine inhibited the effect of NFP, whereas atropine, capsaicin, clonidine, and isoproterenol enhanced CFX absorption by the same order of magnitude as NFP. Thus, complex neural networks can modulate the function of the intestinal di- and tripeptide transporter. Sympathetic noradrenergic fibers, intestinal sensory neurons, and nicotinic synapses are involved in the increase of CFX absorption produced by NFP.  (+info)

Transcriptional regulation of alpha1-adrenoceptor gene in the rat liver during different phases of sepsis. (3/1153)

Changes in alpha1-adrenoceptor (alpha1AR) gene expression in the rat liver during different phases of sepsis were studied. Sepsis was induced by cecal ligation and puncture (CLP). Septic rats exhibit two metabolically distinct phases: an initial hyperglycemic phase (9 h after CLP, early sepsis) followed by a hypoglycemic phase (18 h after CLP; late sepsis). The [3H]prazosin binding studies show that the density of alpha1AR was increased by 30% during the early phase while it was decreased by 24% during the late phase of sepsis. Western blot analyses reveal that alpha1AR protein level was elevated by 48% during early sepsis but was decreased by 55% during late sepsis. Northern blot analyses depict that the steady-state level of alpha1bAR mRNA was enhanced by 21% during the early phase but was declined by 29% during the late phase of sepsis. Nuclear run-off assays show that the transcription rate of alpha1bAR gene transcript was increased by 76% during early sepsis while it was decreased by 29% during late sepsis. The actinomycin D pulse-chase studies indicate that the half-life of alpha1bAR mRNA remained unaffected during the early and the late phases of sepsis. These findings demonstrate that during the early phase of sepsis, the increase in the rate of transcription of alpha1bAR gene paralleled with the elevations in the alpha1bAR mRNA abundance and alpha1AR protein level, while during the late phase of sepsis, the decrease in the rate of transcription of alpha1bAR gene coincided with the declines in the alpha1bAR mRNA abundance and the alpha1AR protein level in the rat liver. These observations indicate that the altered expression of alpha1AR genes in the rat liver during the progression of sepsis was regulated transcriptionally.  (+info)

Effects of heptanol on the neurogenic and myogenic contractions of the guinea-pig vas deferens. (4/1153)

1. The effects of the putative gap junction uncoupler, 1-heptanol, on the neurogenic and myogenic contractile responses of guinea-pig vas deferens were studied in vitro. 2. Superfusion of 2.0 mM heptanol for 20-30 min produced the following reversible changes in the biphasic neurogenic contractile response (8 trials): (i) suppression of both phases; (ii) delayed development of both the first as well as the second phase, accompanied by complete temporal separation of the two phases; (iii) prominent oscillations of force during the second (noradrenergic) phase only. 3. To eliminate prejunctional effects of heptanol, myogenic contractions were evoked by field stimulation of the vas in the presence of suramin (200 microM) and prazosin (1 microM). Heptanol (2.0 mM) abolished these contractions reversibly. 4. These results show that (i) heptanol inhibits both excitatory junction potential (EJP)-dependent and non EJP-dependent contractions of the vas; (ii) a postjunctional site of action of heptanol, probably intercellular uncoupling of smooth muscle cells, contributes to the inhibition of contraction.  (+info)

Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. (5/1153)

1. In arterioles of the hamster cheek pouch, vasodilatation and vasoconstriction can spread via the conduction of electrical signals through gap junctions between cells that comprise the vessel wall. However, conduction in resistance networks supplying other tissues has received relatively little attention. In anaesthetized hamsters, we have investigated the spread of dilatation and constriction along feed arteries and arterioles of the retractor muscle, which is contiguous with the cheek pouch. 2. When released from a micropipette, acetylcholine (ACh) triggered vasodilatation that spread rapidly along feed arteries external to the muscle and arterioles within the muscle. Responses were independent of changes in wall shear rate, perivascular nerve activity, or release of nitric oxide, indicating cell-to-cell conduction. 3. Vasodilatation conducted without decrement along unbranched feed arteries, yet decayed markedly in arteriolar networks. Thus, branching of the conduction pathway dissipated the vasodilatation. 4. Noradrenaline (NA) or a depolarizing KCl stimulus evoked constriction of arterioles and feed arteries of the retractor muscle that was constrained to the vicinity of the micropipette. This behaviour contrasts sharply with the conduction of vasodilatation in these microvessels and with the conduction of vasoconstriction elicited by NA and KCl in cheek pouch arterioles. 5. Focal electrical stimulation produced constriction that spread rapidly along feed arteries and arterioles. These responses were inhibited by tetrodotoxin or prazosin, confirming the release of NA along perivascular sympathetic nerves, which are absent from arterioles studied in the cheek pouch. Thus, sympathetic nerve activity co-ordinated the contraction of smooth muscle cells as effectively as the conduction of vasodilatation co-ordinated their relaxation. 6. In the light of previous findings in the cheek pouch, the properties of vasoconstriction and vasodilatation in feed arteries and arterioles of the retractor muscle indicate that substantive differences can exist in the nature of signal transmission along microvessels of tissues that differ in structure and function.  (+info)

Nitric oxide mediates sympathetic vasoconstriction at supraspinal, spinal, and synaptic levels. (6/1153)

The purposes of this study were to investigate the level of the sympathetic nervous system in which nitric oxide (NO) mediates regional sympathetic vasoconstriction and to determine whether neural mechanisms are involved in vasoconstriction after NO inhibition. Ganglionic blockade (hexamethonium), alpha1-receptor blockade (prazosin), and spinal section at T1 were used to study sympathetic involvement. NO was blocked with Nomega-nitro-L-arginine methyl ester (L-NAME). Regional blood flow in the mesenteric and renal arteries and terminal aorta was monitored by electromagnetic flowmetry in conscious rats. L-NAME (3-5 mg/kg iv) increased arterial pressure and peripheral resistance. Ganglionic blockade (25 mg/kg iv) significantly reduced the increase in resistance in the mesentery and kidney in intact and spinal-sectioned rats. Ganglionic blockade significantly decreased hindquarter resistance in intact rats but not in spinal-sectioned rats. Prazosin (200 micrograms/kg iv) significantly reduced the increased hindquarter resistance. We concluded that NO suppresses sympathetic vasoconstriction in the mesentery and kidney at the spinal level, whereas hindquarter tone is mediated at supraspinal and synaptic levels.  (+info)

Differential vascular alpha1-adrenoceptor antagonism by tamsulosin and terazosin. (7/1153)

AIMS: In patients with lower urinary tract symptoms suggestive of benign prostatic obstruction the alpha1-adrenoceptor antagonist terazosin lowers blood pressure whereas only very small if any alterations were reported with the alpha1-adrenoceptor antagonist tamsulosin. Therefore, we have compared the vascular alpha1-adrenoceptor antagonism of tamsulosin and terazosin directly. METHODS: Ten healthy subjects were investigated in a randomized, single-blind, three-way cross-over design and received a single dose of 0.4 mg tamsulosin, 5 mg terazosin or placebo on 3 study days at least 1 week apart. Before and 1, 3, 5, 7, 10 and 23.5 h after drug intake, alterations of diastolic blood pressure and other haemodynamic parameters in response to a graded infusion of the alpha1-adrenoceptor agonist phenylephrine were determined non-invasively. RESULTS: At most time points tamsulosin inhibited phenylephrine-induced diastolic blood pressure elevations significantly less than terazosin (5 h time point: median difference in inhibition 35%, 95% CI: 18.7-50.3%). On the other hand, phenylephrine-induced changes of cardiac output, heart rate and stroke volume were similar during both active treatments. CONCLUSIONS: In doses equi-effective for treatment of lower urinary tract symptoms tamsulosin causes less inhibition of vasoconstriction than terazosin.  (+info)

Characterization of alpha1-adrenoceptor subtypes mediating vasoconstriction in human umbilical vein. (8/1153)

1. The present study attempted to characterize pharmacologically the subtypes of alpha-adrenoceptors mediating contractions in human umbilical vein (HUV). 2. HUV rings were mounted in isolated organ baths and cumulative concentration-response curves were constructed for the alpha-adrenoceptor agonists phenylephrine and adrenaline. Adrenaline was more potent than phenylephrine (pD2=7.29 and 6.04 respectively). 3. Isoproterenol exhibited no agonism on KCl pre-contracted HUV rings. Propranolol (1 microM) and rauwolscine (0.1 microM) did not affect the concentration-response curves to adrenaline. These results demonstrate the lack of involvement of functional beta-or alpha2-adrenoceptors in adrenaline-induced vasoconstriction. 4. The non subtype selective alpha1-adrenoceptor antagonist prazosin was evaluated on phenylephrine and adrenaline concentration-response curves. The effects of the competitive alpha1A and alpha1D-adrenoceptor antagonists, 5-methyl urapidil and BMY 7378 and the irreversible alpha1B selective compound chloroethylclonidine (CEC) were also evaluated on adrenaline concentration-response curves. 5. The potencies of prazosin against responses mediated by adrenaline (pA2= 10.87) and phenylephrine (pA2= 10.70) indicate the involvement of prazosin-sensitive functional alpha1-adrenoceptor subtype in vasoconstriction of the HUV. 6. The potencies of 5-methyl urapidil (pA2 = 6.70) and BMY 7378 (pA2= 7.34) were not consistent with the activation of an alpha1A- or alpha1D-adrenoceptor population. 7. Exposure to a relatively low CEC concentration (3 microM) abolished the maximum response to adrenaline suggesting that this response was mediated by an alpha1B-adrenoceptor subtype. 8. We conclude that HUV express a prazosin-sensitive functional alpha1-adrenoceptor resembling the alpha1B-subtype according with the low pA2 values for both 5-methyl urapidil and BMY 7378 and the high sensitivity to CEC.  (+info)