(1/1083) Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea.

Identification of common dietary substances capable of affording protection or modulating the onset and severity of arthritis may have important human health implications. An antioxidant-rich polyphenolic fraction isolated from green tea (green tea polyphenols, GTPs) has been shown to possess anti-inflammatory and anticarcinogenic properties in experimental animals. In this study we determined the effect of oral consumption of GTP on collagen-induced arthritis in mice. In three independent experiments mice given GTP in water exhibited significantly reduced incidence of arthritis (33% to 50%) as compared with mice not given GTP in water (84% to 100%). The arthritis index also was significantly lower in GTP-fed animals. Western blot analysis showed a marked reduction in the expression of inflammatory mediators such as cyclooxygenase 2, IFN-gamma, and tumor necrosis factor alpha in arthritic joints of GTP-fed mice. Histologic and immunohistochemical analysis of the arthritic joints in GTP-fed mice demonstrated only marginal joint infiltration by IFN-gamma and tumor necrosis factor alpha-producing cells as opposed to massive cellular infiltration and fully developed pannus in arthritic joints of non-GTP-fed mice. The neutral endopeptidase activity was approximately 7-fold higher in arthritic joints of non-GTP-fed mice in comparison to nonarthritic joints of unimmunized mice whereas it was only 2-fold higher in the arthritic joints of GTP-fed mice. Additionally, total IgG and type II collagen-specific IgG levels were lower in serum and arthritic joints of GTP-fed mice. Taken together our studies suggest that a polyphenolic fraction from green tea that is rich in antioxidants may be useful in the prevention of onset and severity of arthritis.  (+info)

(2/1083) Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3'-digallate.

Previous studies in our laboratory have shown that the major green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), suppressed autophosphorylation of epidermal growth factor (EGF) receptor induced by EGF in human A431 epidermoid carcinoma cells. In this study, we examined the inhibitory effects of black tea polyphenols, including theaflavin (TF-1), a mixture (TF-2) of theaflavin-3-gallate (TF-2a) and theaflavin-3'-gallate (TF-2b), theaflavin-3,3'-digallate (TF-3) and the thearubigin fraction on the autophosphorylation of the EGF and PDGF receptors in A431 cells and mouse NIH3T3 fibroblast cells, respectively. First, we examined the effects of these polyphenols on the proliferation of A431 and NIH3T3 cells. Both EGCG and TF-3 strongly inhibited the proliferation of A431 and NIH3T3 cells more than the other theaflavins did. In cultured cells with pre-treatment of tea polyphenol, TF-3 was stronger than EGCG on the reduction of EGF receptor and PDGF receptor autophosphorylation induced by EGF and PDGF, respectively. Other theaflavins slightly reduced the autophosphorylation of the EGF and PDGF receptors; furthermore, TF-3 could reduce autophosphorylation of the EGF receptor (or PDGF receptor) even with co-treatment with EGF (or PDGF) and TF-3, but EGCG was inactive under these conditions. In addition, TF-3 was stronger than EGCG in blocking EGF binding to its receptor. These results suggest that not only the green tea polyphenol, EGCG, but also the black tea polyphenol, TF-3, have an antiproliferative activity on tumor cells, and the molecular mechanisms of antiproliferation may block the growth factor binding to its receptor and thus suppress mitogenic signal transduction.  (+info)

(3/1083) Prostate cancer chemoprevention by green tea: in vitro and in vivo inhibition of testosterone-mediated induction of ornithine decarboxylase.

Recently, we have shown that ornithine decarboxylase (ODC), a rate-controlling enzyme in the polyamine biosynthetic pathway, is overexpressed in prostate cancer (PCA) and prostatic fluid in humans (R. R. Mohan et al., Clin. Cancer Res., 5: 143-147, 1999). ODC is also characterized as an androgen-responsive gene, and the androgenic stimulation regulates the development and growth of both normal and tumorigenic prostate cells. Thus, chemopreventive approaches aimed toward the modulation of ODC could be effective against PCA. Green tea polyphenols (GTPs) possess strong chemopreventive properties against a variety of animal tumor models and in some human epidemiological studies. At least two epidemiological studies have suggested that people who consume tea regularly may have a decreased risk of PCA. In this study, we investigated the effect of GTPs against testosterone-mediated induction of ODC in human prostate carcinoma cells, LNCaP as an in vitro model, and in Cpb:WU rats and C57BL/6 mice as in vivo models. Treatment of LNCaP cells with testosterone resulted in induction of ODC activity in a dose-dependent manner. Pretreatment of the cells with GTPs resulted in a significant inhibition of testosterone-caused induction of ODC activity in a dose-dependent manner. Similar effects of GTPs were observed in anchorage-independent growth assay of LNCaP cells where pretreatment of the cells with GTP was found to result in dose-dependent inhibition of colony formation. Testosterone treatment of the cells resulted in a significant increase in the level of ODC mRNA, and this increase was almost completely abolished by prior treatment of the cells with GTPs. The administration of testosterone (10 mg/kg body weight, i.p.) to sham-operated and castrated Cpb:WU rats resulted in 2- and 38-fold increases in ODC activity, respectively, in the ventral prostate. Oral feeding of 0.2% GTPs in drinking water for 7 days before testosterone administration resulted in 20 and 54% decreases in testosterone-caused induction of ODC activity in sham-operated and castrated rats, respectively. Similar results were obtained with C57BL/6 mice, where testosterone treatment at similar dosage resulted in a 2-fold increase in ODC activity in the ventral prostate and prior oral feeding with 0.2% GTPs resulted in 40% inhibition in this induction.  (+info)

(4/1083) Histological analysis and ancient DNA amplification of human bone remains found in caius iulius polybius house in pompeii.

Thirteen skeletons found in the Caius Iulius Polybius house, which has been the object of intensive study since its discovery in Pompeii 250 years ago, have provided an opportunity to study either bone diagenesis by histological investigation or ancient DNA by polymerase chain reaction analysis. DNA analysis was done by amplifying both X- and Y-chromosomes amelogenin loci and Y-specific alphoid repeat locus. The von Willebrand factor (vWF) microsatellite locus on chromosome 12 was also analyzed for personal identification in two individuals showing alleles with 10/11 and 12/12 TCTA repeats, respectively. Technical problems were the scarcity of DNA content from osteocytes, DNA molecule fragmentation, microbial contamination which change bone structure, contaminating human DNA which results from mishandling, and frequent presence of Taq DNA polymerase inhibiting molecules like polyphenols and heavy metals. The results suggest that the remains contain endogenous human DNA that can be amplified and analyzed. The amplifiability of DNA corresponds to the bone preservation and dynamics of the burial conditions subsequent to the 79 A.D. eruption.  (+info)

(5/1083) Quinol-glutathione conjugate-induced mutation spectra in the supF gene replicated in human AD293 cells and bacterial MBL50 cells.

Hydroquinone is a nephrocarcinogen in rats but generally tests negative in standard mutagenicity assays. However, 2,3,5-tris-(glutathion-S-yl)hydroquinone, a potent nephrotoxic metabolite of hydroquinone, and 2-bromo-bis-(glutathion-S-yl)hydroquinone, another cytotoxic quinol-glutathione (GSH) conjugate, cause extensive single strand breaks in DNA in a manner that is dependent on the formation of reactive oxygen species. We, therefore, investigated whether quinol-GSH conjugates have the potential to behave as genotoxicants. The shuttle vector pSP189, containing the supF gene, was treated with 2,3,5-tris-(glutathion-S-yl)hydroquinone and replicated in both human AD293 cells and Escherichia coli MBL50 cells. The mutation frequency increased 4.6- and 2.6-fold in human AD293 and bacterial MBL50 cells, respectively. Base substitutions were the major type of mutations, and they occurred predominantly at G:C sites in both cell types. A high frequency of deletions (30%), including < 10- and > 10-bp deletions, were observed in AD293-replicated plasmids. The most common types of mutations in AD293 cells were G:C to A:T transitions (33.8%) and G:C to T:A (29.4%) and G:C to C:G (19.1%) transversions. In MBL50 cells, the major mutations were G:C to T:A (33.8%) and G:C to C:G (31.3%) transversions and G:C to A:T transitions (27.5%). The mutation spectra were similar to those reported for *OH-induced mutations, suggesting that *OH generated from polyphenolic-GSH conjugates not only plays a role in cytotoxicity but also provides a basis for their mutagenicity and carcinogenicity.  (+info)

(6/1083) Dietary supplementation of grape polyphenols to rats ameliorates chronic ethanol-induced changes in hepatic morphology without altering changes in hepatic lipids.

Increase in oxidative stress after chronic ethanol consumption can result in hepatic injury. Because polyphenolic compounds can offer antioxidant protection to the cardiovascular system, this study was designed to investigate whether dietary supplementation of polyphenols from grapes may ameliorate hepatic injury resulting from chronic ethanol consumption. Male Sprague-Dawley rats were administered the following diets for 2 mo: 1) Lieber-DeCarli (L-D) diet with isocaloric amount of maltose instead of ethanol (Basal), 2) the L-D diet with 50g/L ethanol (EtOH); 3) L-D diet with 50 mg/L of grape polyphenols (GP) and 4) ethanol diet with GP (EtOH + GP). Rats given EtOH or EtOH + GP diets had significantly more hepatic triacylglycerols (P < 0.0001) and lipid peroxidation products (P < 0.01) compared with those given the Basal and GP diets. In addition, ethanol ingestion also decreased significantly (P < 0.01) the proportion of 16:0 and increased 18:0 and 18:1 in hepatic phospholipids, suggesting a perturbation of the de novo fatty acid biosynthesis pathways. However, GP supplementation alone and GP added to the ethanol diet did not alter the lipid changes mediated by ethanol except for the levels of 22:6(n-3) which were significantly (P < 0.05) higher in the EtOH + GP group than in the EtOH group. Despite a lack of gross lipid changes, histologic assessment showed significantly (P < 0.05) less hepatic damage in the GP + EtOH group compared with the EtOH group. These results clearly distinguished ethanol-mediated changes in hepatic morphology from the changes in hepatic lipids and further demonstrated the ability of GP to ameliorate hepatic damage resulting from chronic ethanol consumption.  (+info)

(7/1083) Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions.

Tannic acid (TA), a plant polyphenol, has been described as having antimutagenic, anticarcinogenic and antioxidant activities. Since it is a potent chelator of iron ions, we decided to examine if the antioxidant activity of TA is related to its ability to chelate iron ions. The degradation of 2-deoxyribose induced by 6 microM Fe(II) plus 100 microM H2O2 was inhibited by TA, with an I50 value of 13 microM. Tannic acid was over three orders of magnitude more efficient in protecting against 2-deoxyribose degradation than classical *OH scavengers. The antioxidant potency of TA was inversely proportional to Fe(II) concentration, demonstrating a competition between H2O2 and AT for reaction with Fe(II). On the other hand, the efficiency of TA was nearly unchanged with increasing concentrations of the *OH detector molecule, 2-deoxyribose. These results indicate that the antioxidant activity of TA is mainly due to iron chelation rather than *OH scavenging. TA also inhibited 2-deoxyribose degradation mediated by Fe(III)-EDTA (iron = 50 microM) plus ascorbate. The protective action of TA was significantly higher with 50 microM EDTA than with 500 microM EDTA, suggesting that TA removes Fe(III) from EDTA and forms a complex with iron that cannot induce *OH formation. We also provided evidence that TA forms a stable complex with Fe(II), since excess ferrozine (14 mM) recovered 95-96% of the Fe(II) from 10 microM TA even after a 30-min exposure to 100-500 microM H2O2. Addition of Fe(III) to samples containing TA caused the formation of Fe(II)n-TA, complexes, as determined by ferrozine assays, indicating that TA is also capable of reducing Fe(III) ions. We propose that when Fe(II) is complexed to TA, it is unable to participate in Fenton reactions and mediate *OH formation. The antimutagenic and anticarcinogenic activity of TA, described elsewhere, may be explained (at least in part) by its capacity to prevent Fenton reactions.  (+info)

(8/1083) Red wine inhibits monocyte chemotactic protein-1 expression and modestly reduces neointimal hyperplasia after balloon injury in cholesterol-Fed rabbits.

BACKGROUND: Wine consumption decreases the risk of myocardial infarction. Intimal hyperplasia contributes to restenosis after angioplasty. Local ethanol delivery inhibits intimal hyperplasia after balloon injury in rabbit iliac and pig coronary arteries. The effects of wine consumption on intimal response and monocyte chemotactic protein-1 (MCP-1) expression were studied in cholesterol-fed rabbits. METHODS AND RESULTS: Male rabbits were fed a 2% cholesterol diet together with red wine (12.5% vol, 5 mL/kg body wt per day; n=7), white wine (13.3% vol, 5 mL/kg body wt per day; n=7), or no wine as a control (n=8) for 6 weeks. A balloon injury of the abdominal aorta was performed at the end of the third week. Abdominal aortas were harvested at the end of 6 weeks. Neointimal hyperplasia was measured morphometrically. MCP-1 expression was determined by Northern blot, in situ hybridization, and immunohistochemistry. Rabbits fed red wine had significantly less neointimal hyperplasia than did control rabbits (intima/media area ratio 0.59+/-0.05 [red wine group] versus 0.79+/-0.07 [control group], P<0.05). However, rabbits fed white wine showed a trend (but not significant) toward less intimal response compared with control rabbits (intima/media area ratio 0.65+/-0.04 [white wine group] versus 0.79+/-0.07 [control group], P=0.165). Both red wine and white wine significantly reduced MCP-1 mRNA and protein expression in the aorta. CONCLUSIONS: Long-term consumption of red wine and white wine inhibits MCP-1 expression, and in the small number of animals studied, red wine modestly reduces neointimal hyperplasia. Since red wine exhibits higher antioxidant capacity than does white wine, the decreased intimal response might be partly attributed to its antioxidant effects.  (+info)