The mitochondrial DNA molecule of the aardvark, Orycteropus afer, and the position of the Tubulidentata in the eutherian tree. (1/109)

An outstanding problem in mammal phylogeny is the relationship of the aardvark (Orycteropus afer), the only living species of the order Tubulidentata, to the extant eutherian lineages. In order to examine this problem the complete mitochondrial DNA (mtDNA) molecule of the aardvark was sequenced and analysed. The aardvark tRNA-Ser (UCN) differs from that of other mammalian mtDNAs reported and appears to have reversed to the ancestral secondary structure of non-mammalian vertebrates and mitochondrial tRNAs in general. Phylogenetic analysis of 12 concatenated protein-coding genes (3325 amino acids) included the aardvark and 15 additional eutherians, two marsupials and a monotreme. The most strongly supported tree identified the aardvark as a sister group of a clade including the armadillo (Xenarthra) and the Cetferungulata (carnivores, perissodactyls, artiodactyls and cetaceans). By applying three molecular calibration points the divergence between the aardvark and armadillo-cetferungulates was estimated at ca. 90 million years before present.  (+info)

Electroreception in monotremes. (2/109)

I will briefly review the history of the bill sense of the platypus, a sophisticated combination of electroreception and mechanoreception that coordinates information about aquatic prey provided from the bill skin mechanoreceptors and electroreceptors, and provide an evolutionary account of electroreception in the three extant species of monotreme (and what can be inferred of their ancestors). Electroreception in monotremes is compared and contrasted with the extensive body of work on electric fish, and an account of the central processing of mechanoreceptive and electroreceptive input in the somatosensory neocortex of the platypus, where sophisticated calculations seem to enable a complete three-dimensional fix on prey, is given.  (+info)

Origin of gene overlap: the case of TCP1 and ACAT2. (3/109)

The human acetyl-CoA acetyltransferase 2 gene, ACAT2, codes for a thiolase, an enzyme involved in lipid metabolism. The human T-complex protein 1 gene, TCP1, encodes a molecular chaperone of the chaperonin family. The two genes overlap by their 3'-untranslated regions, their coding sequences being located on opposite DNA strands in a tail-to-tail orientation. To find out how the overlap might have arisen in evolution, the homologous genes of the zebrafish, the African toad, caiman, platypus, opossum, and wallaby were identified. In each species, standard or long polymerase chain reactions were used to determine whether the ACAT2 and TCP1 homologs are closely linked and, if so, whether they overlap. The results reveal that the overlap apparently arose during the transition from therapsid reptiles to mammals and has been retained for >200 million years. Part of the overlapping untranslated region shows remarkable sequence conservation. The overlap presumably arose during the chromosomal rearrangement that brought the two unrelated and previously separated genes together. One or both of the transposed genes found by chance signals that are necessary for the processing of their transcripts to be present on the noncoding strand of the partner gene.  (+info)

Characterization of a C-type natriuretic peptide (CNP-39)-formed cation-selective channel from platypus (Ornithorhynchus anatinus) venom. (4/109)

1. The lipid bilayer technique is used to characterize the biophysical and pharmacological properties of a novel, fast, cation-selective channel formed by incorporating platypus (Ornithorhynchus anatinus) venom (OaV) into lipid membranes. 2. A synthetic C-type natriuretic peptide OaCNP-39, which is identical to that present in platypus venom, mimics the conductance, kinetics, selectivity and pharmacological properties of the OaV-formed fast cation-selective channel. The N-terminal fragment containing residues 1-17, i.e. OaCNP-39(1-17), induces the channel activity. 3. The current amplitude of the TEACl-insensitive fast cation-selective channel is dependent on cytoplasmic K+, [K+]cis. The increase in the current amplitude, as a function of increasing [K+]cis, is non-linear and can be described by the Michaelis-Menten equation. At +140 mV, the values of gammamax and KS are 63.1 pS and 169 mM, respectively, whereas at 0 mV the values of gammamax and KS are 21.1 pS and 307 mM, respectively. gammamax and KS are maximal single channel conductance and concentration for half-maximal gamma, respectively. The calculated permeability ratios, PK:PRb:PNa:PCs:PLi, were 1:0.76:0.21:0.09:0.03, respectively. 4. The probability of the fast channel being open, Po, increases from 0.15 at 0 mV to 0.75 at +140 mV. In contrast, the channel frequency, Fo, decreases from 400 to 180 events per second for voltages between 0 mV and +140. The mean open time, To, increases as the bilayer is made more positive, between 0 and +140 mV. The mean values of the voltage-dependent kinetic parameters, Po, Fo, To and mean closed time (Tc), are independent of [KCl]cis between 50 and 750 mM (P > 0. 05). 5. It is proposed that some of the symptoms of envenomation by platypus venom may be caused partly by changes in cellular functions mediated via the OaCNP-39-formed fast cation-selective channel, which affects signal transduction.  (+info)

Calcium dependence of C-type natriuretic peptide-formed fast K(+) channel. (5/109)

The lipid bilayer technique was used to characterize the Ca(2+) dependence of a fast K(+) channel formed by a synthetic 17-amino acid segment [OaCNP-39-(1-17)] of a 39-amino acid C-type natriuretic peptide (OaCNP-39) found in platypus (Ornithorhynchus anatinus) venom (OaV). The OaCNP-39-(1-17)-formed K(+) channel was reversibly dependent on 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-buffered cis (cytoplasmic) Ca(2+) concentration ([Ca(2+)](cis)). The channel was fully active when [Ca(2+)](cis) was >10(-4) M and trans (luminal) Ca(2+) concentration was 1.0 mM, but not at low [Ca(2+)](cis). The open probability of single channels increased from zero at 1 x 10(-6) M cis Ca(2+) to 0.73 +/- 0.17 (n = 22) at 10(-3) M cis Ca(2+). Channel openings to the maximum conductance of 38 pS were rapidly and reversibly activated when [Ca(2+)](cis), but not trans Ca(2+) concentration (n = 5), was increased to >5 x 10(-4) M (n = 14). Channel openings to the submaximal conductance of 10.5 pS were dominant at >/=5 x 10(-4) M Ca(2+). K(+) channels did not open when cis Mg(2+) or Sr(2+) concentrations were increased from zero to 10(-3) M or when [Ca(2+)](cis) was maintained at 10(-6) M (n = 3 and 2). The Hill coefficient and the inhibition constant were 1 and 0.8 x 10(-4) M cis Ca(2+), respectively. This dependence of the channel on high [Ca(2+)](cis) suggests that it may become active under 1) physiological conditions where Ca(2+) levels are high, e.g., during cardiac and skeletal muscle contractions, and 2) pathological conditions that lead to a Ca(2+) overload, e.g., ischemic heart and muscle fatigue. The channel could modify a cascade of physiological functions that are dependent on the Ca(2+)-activated K(+) channels, e.g., vasodilation and salt secretion.  (+info)

Solution structure of a defensin-like peptide from platypus venom. (6/109)

Three defensin-like peptides (DLPs) were isolated from platypus venom and sequenced. One of these peptides, DLP-1, was synthesized chemically and its three-dimensional structure was determined using NMR spectroscopy. The main structural elements of this 42-residue peptide were an anti-parallel beta-sheet comprising residues 15-18 and 37-40 and a small 3(10) helix spanning residues 10-12. The overall three-dimensional fold is similar to that of beta-defensin-12, and similar to the sodium-channel neurotoxin ShI (Stichodactyla helianthus neurotoxin I). However, the side chains known to be functionally important in beta-defensin-12 and ShI are not conserved in DLP-1, suggesting that it has a different biological function. Consistent with this contention, we showed that DLP-1 possesses no anti-microbial properties and has no observable activity on rat dorsal-root-ganglion sodium-channel currents.  (+info)

Histological and immunohistological investigation of lymphoid tissue in the platypus (Ornithorhynchus anatinus). (7/109)

The gross and histological appearance and the distribution of T and B lymphocytes and plasma cells are described for lymphoid tissues obtained from 15 platypuses. The spleen was bilobed and surrounded by a thick capsule of collagen, elastic fibres and little smooth muscle. White pulp was prominent and included germinal centres and periarterial lymphoid sheaths. Red pulp contained haematopoietic tissue. A thin lobulated thymus was located within the mediastinum overlying the heart. The cortex of lobules consisted of dense aggregates of small and medium lymphocytes, scattered macrophages and few reticular epithelial cells. In the medulla, Hassall's corpuscles were numerous, lymphocytes were small and less abundant, and reticular cells were more abundant than in the cortex. Lymphoid nodules scattered throughout loose connective tissue in cervical, pharyngeal, thoracic, mesenteric and pelvic sites measured 790 +/- 370 microm (mean +/- S.D., n = 39) in diameter, the larger of which could be observed macroscopically. These consisted of single primary or secondary follicles supported by a framework of reticular fibres. Macrophages were common in the germinal centres. The platypus had a full range of gut-associated lymphoid tissue. No tonsils were observed macroscopically but histologically they consisted of submucosal follicles and intraepithelial lymphocytes. Peyer's patches were not observed macroscopically but histologically they consisted of several prominent submucosal secondary follicles in the antimesenteric wall of the intestine. Caecal lymphoid tissue consisted of numerous secondary follicles in the submucosa and densely packed lymphocytes in the lamina propria. Bronchus-associated lymphoid tissue was not observed macroscopically but was identified in 7 of 11 platypus lungs assessed histologically. Lymphoid cells were present as primary follicles associated with bronchi, as aggregates adjacent to blood vessels and as intraepithelial lymphocytes. The distribution of T lymphocytes, identified with antihuman CD3 and CD5, and B lymphocytes and plasma cells, identified with antihuman CD79a and CD79b and antiplatypus immunoglobulin, within lymphoid tissues in the platypus was similar to that described in therian mammals except for an apparent relative paucity of B lymphocytes. This study establishes that the platypus has a well-developed lymphoid system which is comparable in histological structure to that in therian mammals. It also confirms the distinctiveness of its peripheral lymphoid tissue, namely lymphoid nodules. Platypus lymphoid tissue has all the essential cell types, namely T and B lymphocytes and plasma cells, to mount an effective immune response against foreign antigens.  (+info)

A 33 kDa molecular marker of sperm acrosome differentiation and maturation in the tammar wallaby (Macropus eugenii). (8/109)

This study was undertaken to identify potential molecular markers of acrosomal biogenesis and post-testicular maturation in marsupials, using the tammar wallaby as a model species. A two-step sperm extraction procedure yielded two protein extracts of apparent acrosomal origin and a tail extract. The extracts were analysed by SDS-PAGE under reducing conditions. Several prominent polypeptide bands (45, 38 and 33 kDa) appeared common to both acrosomal extracts. Antiserum raised against the 33 kDa polypeptide from the inner acrosomal membrane matrix (IAMM) extract showed immunoreactivity with 45, 38 and 33 kDa polypeptides in both acrosomal extracts, indicating that the 33 kDa polypeptide was related to the proteins in the 45 and 38 kDa bands. Therefore, the antiserum was used as a molecular probe. Indirect immuno-fluorescence indicated that the acrosome was the major location of the 33 kDa polypeptide. This contention was confirmed by ultrastructural study: immunogold labelling indicated that the 33 kDa polypeptide associated with acrosomal matrix components throughout acrosomal development in the testes and throughout post-testicular maturation in the epididymis. The label clearly delineated the changing morphology of the maturing marsupial acrosome. This is the first study to use immunocytochemical techniques to chart testicular and post-testicular development of any sperm organelle in a marsupial. As a result of this study, a 33 kDa molecular marker of marsupial acrosome differentiation and maturation has been identified. It may be possible to chart similar events in other marsupial species and identify opportunities for manipulating fertility.  (+info)