Pituitary adenylate cyclase-activating polypeptide, interleukin-6 and glucocorticoids regulate the release of vascular endothelial growth factor in pituitary folliculostellate cells. (1/588)

There is increasing evidence that hormones play an important role in the control of endothelial cell function and growth by regulating the production of vascular endothelial growth factor (VEGF). VEGF regulates vascular permeability and represents the most powerful growth factor for endothelial cells. In the normal anterior pituitary, VEGF has been detected only in folliculostellate (FS) cells. In the present study, the regulation of the release of VEGF from FS-like mouse TtT/GF cells, and from FS cells of rat pituitary monolayer cell cultures was investigated using a specific VEGF ELISA. Basal release of VEGF was demonstrated in cultures of both TtT/GF cells and rat pituitary cells. Interestingly, the VEGF secretion was stimulated by both forms of pituitary adenylate cyclase-activating polypeptide (PACAP-38 and PACAP-27), indicating that this hypothalamic peptide regulates endothelial cell function and growth within the pituitary. VEGF secretion was also stimulated by interleukin-6 (IL-6) whereas basal, IL-6- and PACAP-stimulated secretion was inhibited by the synthetic glucocorticoid dexamethasone. The inhibitory action of dexamethasone was reversed by the glucocorticoid receptor antagonist RU486, suggesting that in FS cells functional glucocorticoid receptors mediate the inhibitory action of glucocorticoids on the VEGF secretion. The endocrine and auto-/paracrine control of VEGF production in pituitary FS cells by PACAP, IL-6 and glucocorticoids may play an important role both in angiogenesis and vascular permeability regulation within the pituitary under physiological and pathophysiological conditions.  (+info)

GABA(B) receptor-mediated stimulation of adenylyl cyclase activity in membranes of rat olfactory bulb. (2/588)

Previous studies have shown that GABA(B) receptors facilitate cyclic AMP formation in brain slices likely through an indirect mechanism involving intracellular second messengers. In the present study, we have investigated whether a positive coupling of GABA(B) receptors to adenylyl cyclase could be detected in a cell-free preparation of rat olfactory bulb, a brain region where other Gi/Go-coupled neurotransmitter receptors have been found to stimulate the cyclase activity. The GABA(B) receptor agonist (-)-baclofen significantly increased basal adenylyl cyclase activity in membranes of the granule cell and external plexiform layers, but not in the olfactory nerve-glomerular layer. The adenylyl cyclase stimulation was therefore examined in granule cell layer membranes. The (-)-baclofen stimulation (pD2=4.53) was mimicked by 3-aminopropylphosphinic acid (pD2=4.60) and GABA (pD2=3.56), but not by (+)-baclofen, 3-aminopropylphosphonic acid, muscimol and isoguvacine. The stimulatory effect was counteracted by the GABA(B) receptor antagonists CGP 35348 (pA2=4.31), CGP 55845 A (pA2=7.0) and 2-hydroxysaclofen (pKi=4.22). Phaclofen (1 mM) was inactive. The (-)-baclofen stimulation was not affected by quinacrine, indomethacin, nordihydroguaiaretic acid and staurosporine, but was completely prevented by pertussis toxin and significantly reduced by the alpha subunit of transducin, a betagamma scavenger. The betagamma subunits of transducin stimulated the cyclase activity and this effect was not additive with that produced by (-)-baclofen. In the external plexiform and granule cell layers, but not in the olfactory nerve-glomerular layer, (-)-baclofen enhanced the adenylyl cyclase stimulation elicited by the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) 38. Conversely, the adenylyl cyclase activity stimulated by either forskolin or Ca2+/calmodulin-(Ca2+/CaM) was inhibited by (-)-baclofen in all the olfactory bulb layers examined. These data demonstrate that in specific layers of rat olfactory bulb activation of GABA(B) receptors enhances basal and neurotransmitter-stimulated adenylyl cyclase activities by a mechanism involving betagamma subunits of Gi/Go. This positive coupling is associated with a widespread inhibitory effect on forskolin- and Ca2+/CaM-stimulated cyclic AMP formation.  (+info)

Vagus nerve modulates secretin binding sites in the rat forestomach. (3/588)

Secretin is well known for its inhibitory action on gastric motility. It has been reported that secretin in a physiological dose inhibits gastric motility through mediation by the vagal afferent pathway. Secretin also elicited relaxation of carbachol-stimulated rat forestomach muscle strips by binding to its receptors, suggesting a direct action on this peripheral tissue. We hypothesized that vagal input may affect the action of secretin by modulating the level of secretin receptor in the forestomach. Several treatments, including vagal ligation, vagotomy, perivagal application of capsaicin or colchicine, intravenous infusion of tetrodotoxin, and intraperitoneal injection of atropine, were performed to investigate their effects on secretin receptor binding to forestomach membranes. Specific binding of 125I-labeled secretin to forestomach membranes was significantly decreased (45%) by vagal ligation, vagotomy (50%), or perivagal colchicine treatment (40%). On the contrary, specific binding of 125I-secretin was not affected by perivagal capsaicin treatment, intravenous infusion of tetrodotoxin, or intraperitoneal injection of atropine. By Scatchard analysis of the binding data, the capacity of the high-affinity binding sites in forestomach membranes was found to decrease significantly after vagal ligation compared with membranes from the sham-operated group. However, the affinity at the high-affinity binding sites, the binding parameters of the low-affinity binding sites, and binding specificity were not changed. Vagal ligation but not perivagal capsaicin treatment reduced the inhibitory effect of secretin on bethanechol-stimulated contraction of isolated forestomach muscle strips, causing a right shift in the dose-response curve. These results suggest that vagal input through axonal transport plays a significant role on secretin action by modulating the capacity of secretin binding sites (but not affinity or specificity), at least in rat forestomach.  (+info)

Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kappa B and IFN regulatory factor 1 activation. (4/588)

High-output nitric oxide (NO) production from activated macrophages, resulting from the induction of inducible NO synthase (iNOS) expression, represents a major mechanism for macrophage cytotoxicity against pathogens. However, despite its beneficial role in host defense, sustained high-output NO production was also implicated in a variety of acute inflammatory diseases and autoimmune diseases. Therefore, the down-regulation of iNOS expression during an inflammatory process plays a significant physiological role. This study examines the role of two immunomodulatory neuropeptides, the vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), on NO production by LPS-, IFN-gamma-, and LPS/IFN-gamma-stimulated peritoneal macrophages and the Raw 264.7 cell line. Both VIP and PACAP inhibit NO production in a dose- and time-dependent manner by reducing iNOS expression at protein and mRNA level. VPAC1, the type 1 VIP receptor, which is constitutively expressed in macrophages, and to a lesser degree VPAC2, the type 2 VIP receptor, which is induced upon macrophage activation, mediate the effect of VIP/PACAP. VIP/PACAP inhibit iNOS expression and activity both in vivo and in vitro. Two transduction pathways appear to be involved, a cAMP-dependent pathway that preferentially inhibits IFN regulatory factor-1 transactivation and a cAMP-independent pathway that blocks NF-kappa B binding to the iNOS promoter. The down-regulation of iNOS expression, together with previously reported inhibitory effects on the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12, and the stimulation of the anti-inflammatory IL-10, define VIP and PACAP as "macrophage deactivating factors" with significant physiological relevance.  (+info)

Interactions of ovarian steroids with pituitary adenylate cyclase-activating polypeptide and GnRH in anterior pituitary cells. (5/588)

Pituitary adenylate cyclase-activating polypeptide (PACAP) releases LH and FSH from anterior pituitary cells. Although this effect is relatively weak, it has a strong sensitizing action on GnRH-induced gonadotropin secretion. Here we investigated the possibility that ovarian steroids, which are well-known modulators of LH secretion, interact with PACAP and GnRH in pituitary gonadotrophs. Rat pituitary cells were treated for 48 h with vehicle, 1 nmol/l estradiol, 1 nmol/l estradiol + 100 nmol/l progesterone or 48 h with 1 nmol/l estradiol and 4 h with 100 nmol/l progesterone. The cells were stimulated for 3 h with 1 nmol/l GnRH or 100 nmol/l PACAP. Estradiol treatment alone enhanced basal as well as GnRH- or PACAP-stimulated LH secretion. LH release was facilitated by additional short-term progesterone treatment. Long-term treatment with estradiol and progesterone led to reduced LH responses to GnRH and PACAP. Neither treatment paradigms affected cAMP production. However, estradiol treatment led to enhanced cAMP accumulation in quiescent or GnRH-stimulated cells. PACAP-induced increases of cAMP production were inhibited by estradiol treatment. After 7-h preincubation with 10 nmol/l PACAP, cells responded with enhanced LH secretion to GnRH stimulation. When steroid pretreatment was performed the responsiveness of gonadotrophs to low concentrations of GnRH was still increased. In contrast, at high concentrations of GnRH the sensitizing action of PACAP on agonist-induced LH secretion was lost in steroid-treated cells. There were no significant differences between the steroid treatment paradigms. It is concluded that estradiol but not progesterone acts as a modulator of adenylyl cyclase in gonadotrophs. The stimulatory effect of estradiol is thought to be involved in its sensitizing action on agonist-induced LH secretion. The inhibitory effect of estradiol on PACAP-stimulated adenylyl cyclase activities seems to be responsible for the loss of its action to sensitize LH secretory responses to GnRH.  (+info)

Regulation of basal expression of catecholamine-synthesizing enzyme genes by PACAP. (6/588)

We have previously reported that the cAMP/protein kinase A (PKA) pathway is important in the gene regulation of both induction and basal expressions of the catecholamine synthesizing enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has been shown to activate the intracellular cAMP/PKA pathway. In the present study, using primary cultured bovine adrenal medullary cells, we determined whether the basal activity of the PACAP receptor might play a role in the maintenance of the basal expression of these enzyme genes via the cAMP/PKA pathway. The potent PACAP receptor antagonist PACAP (6-38) caused a reduction of TH and DBH mRNA levels in a dose dependent manner as well as their enzyme activities and TH protein level. The effects of PACAP (6-38) and the PKA inhibitor H-89 exhibited generally similar trends, and were not additive in the reduction of TH and DBH gene expression and activities, suggesting that they take a common intracellular signaling pathway. The antagonist also caused decreases in the intracellular norepinephrine and epinephrine levels similar to the effect of H-89. Taken together, the data suggests that PACAP is involved in the regulation of maintenance of the catecholamine synthesizing enzymes TH and DBH by utilizing the cAMP/PKA pathway.  (+info)

Rapid tachyphylaxis to hemodynamic effects of PACAP-27 after inhibition of nitric oxide synthesis. (7/588)

The vasodilator effects of pituitary adenylate cyclase-activating polypeptide (PACAP)-27 are subject to tachyphylaxis in rats treated with the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). We examined whether this tachyphylaxis could be prevented by administration of the putative endothelium-derived nitrosyl factor S-nitroso-L-cysteine (L-SNC) and whether L-SNC may exert its effects via increases in cGMP levels in vascular smooth muscle. Five doses of PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats. These responses were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) in L-NAME-treated (50 micromol/kg iv) rats produced vasodilator responses similar to those in saline-treated rats, whereas subsequent injections produced progressively smaller responses. The injection of L-SNC (1,200 nmol/kg iv) before each injection of PACAP-27 prevented tachyphylaxis to the Gs protein-coupled receptor agonist in L-NAME-treated rats, whereas equihypotensive doses of the NO donor sodium nitroprusside (100 micrograms/kg iv) did not. The injection of the membrane-permeant cGMP analog 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (8-CPT-cGMP; 30 micromol/kg iv) to L-NAME-treated rats restored resting hemodynamic values to pre-L-NAME levels but did not prevent the development of tachyphylaxis to PACAP-27. These results suggest that nitrosyl factors prevent the development of tachyphylaxis to the hemodynamic actions of PACAP-27. These nitrosyl factors may act independently of their ability to generate cGMP in vascular smooth muscle.  (+info)

Pituitary adenylate cyclase-activating peptide as a neurotransmitter in the canine ileal circular muscle. (8/588)

Pituitary adenylate cyclase-activating peptide (PACAP)1-27, PACAP1-38, and vasoactive intestinal peptide (VIP) initiated dose-dependent contractions of canine ileal circular muscle after intra-arterial injection in vivo or ex vivo. PACAP1-27- and VIP-induced contractions approached the tissue maximum; VIP was 100-fold less potent. PACAP1-38 was more potent than VIP. PACAP1-27 contractions in vivo were unaffected by hexamethonium, reduced equally by atropine or atropine plus hexamethonium, and abolished by tetrodotoxin (TTX), suggesting that PACAP released acetylcholine and another excitatory neurotransmitter from postganglionic cholinergic enteric nerves. In myenteric plexus-free circular muscle strips, PACAP1-27 at 10(-9) M and PACAP1-38 or VIP at 10(-7) M increased [3H]acetylcholine release during nerve stimulation, suggesting the locus of one postganglionic site at which PACAP1-27 acts. All agonists inhibited nerve-mediated contractions in vivo with a potency rank order similar to that for excitation. Inhibition of nitric oxide (NO) synthetase or TTX decreased the duration and amplitude of PACAP1-27- but not PACAP1-38-induced inhibition. Inhibition of NO synthetase abolished VIP-induced inhibition, but TTX did not. Submaximal contractions to acetylcholine were amplified by PACAP1-27 or VIP before TTX and inhibited after TTX. Thus, both PACAP molecules and VIP directly inhibit and indirectly excite smooth muscle contractions. PACAP1-27 and VIP also release NO. The functional potency differences between PACAP1-27 and VIP suggest PAC1 receptors mediate all responses, likely through the stimulation of adenylate cyclase.  (+info)