The contribution of adjacent subunits to the active sites of D-3-phosphoglycerate dehydrogenase. (1/78)

D-3-Phosphoglycerate dehydrogenase (PGDH) from Escherichia coli is allosterically inhibited by L-serine, the end product of its metabolic pathway. Previous results have shown that inhibition by serine has a large effect on Vmax and only a small or negligible effect on Km. PGDH is thus classified as a V-type allosteric enzyme. In this study, the active site of PGDH has been studied by site-directed mutagenesis to assess the role of certain residues in substrate binding and catalysis. These consist of a group of cationic residues (Arg-240, Arg-60, Arg-62, Lys-39, and Lys-141') that potentially form an electrostatic environment for the binding of the negatively charged substrate, as well as the only tryptophan residue found in PGDH and which fits into a hydrophobic pocket immediately adjacent to the active site histidine residue. Interestingly, Trp-139' and Lys-141' are part of the polypeptide chain of the subunit that is adjacent to the active site. The results of mutating these residues show that Arg-240, Arg-60, Arg-62, and Lys-141' play distinct roles in the binding of the substrate to the active site. Mutants of Trp-139' show that this residue may play a role in stabilizing the catalytic center of the enzyme. Furthermore, these mutants appear to have a significant effect on the cooperativity of serine inhibition and suggest a possible role for Trp-139' in the cooperative interactions between subunits.  (+info)

Role of cysteine in the dietary control of the expression of 3-phosphoglycerate dehydrogenase in rat liver. (2/78)

Shifting rats to a protein-free, carbohydrate-rich diet, although not starvation, resulted in the appearance of mRNA for, and activity of, 3-phosphoglycerate dehydrogenase (3-PGDH) in liver as well as in a marked decrease in plasma cystine concentration. Refeeding with protein caused a 50% decrease in the mRNA in 8 h and its complete disappearance within 24 h, followed by a slower disappearance of the enzymic activity. Intraperitoneal administration of cysteine or methionine to protein-starved rats decreased the mRNA by 50-60% after 8 h. However, the repeated administration of cysteine failed to cause the complete disappearance of this mRNA in 24 h. In hepatocytes in primary culture, cysteine plus methionine and glucagon had, independently, an approx. 4-fold inhibitory effect on the abundance of the 3-PGDH mRNA and caused its almost complete disappearance when tested together. Insulin had an approx. 2-fold stimulatory effect, which was antagonized by cysteine plus methionine but was still apparent in the presence of glucagon. Nuclear run-on experiments and analysis of the stability of the mRNA with 5,6-dichlorobenzimidazole riboside, an inhibitor of RNA polymerase II, suggested that the effect of cysteine plus methionine was due to destabilization of the mRNA, whereas the effect of glucagon was exerted on transcription. Cysteine, but not methionine, inhibited the accumulation of 3-PGDH mRNA in FTO2B hepatoma cells. In conclusion, the dietary control of the expression of the 3-PGDH gene in liver seems to involve the negative effects of cysteine and glucagon and the positive effect of insulin.  (+info)

The relationship between effector binding and inhibition of activity in D-3-phosphoglycerate dehydrogenase. (3/78)

The binding of L-serine to phosphoglycerate dehydrogenase from Escherichia coli displays elements of both positive and negative cooperativity. At pH 7.5, approximately 2 mol of serine are bound per mole of tetrameric enzyme. A substantial degree of positive cooperativity is seen for the binding of the second ligand, but the binding of the third and fourth ligand display substantial negative cooperativity. The data indicate a state of approximately 50% inhibition when only one serine is bound and approximately 80-90% inhibition when two serines are bound. This is consistent with the tethered domain hypothesis that has been presented previously. Comparison of the data derived directly from binding stoichiometry to the binding constants determined from the best fit to the Adair equation, produce a close agreement, and reinforce the general validity of the derived binding constants. The data also support the conclusion that the positive cooperativity between the binding to the first and second site involves binding sites at opposite interfaces over 110 A apart. Thus, an order of binding can be envisioned where the binding of the first ligand initiates a conformational transition that allows the second ligand to bind with much higher affinity at the opposite interface. This is followed by the third ligand, which binds with lesser affinity to one of the two already occupied interfaces, and in so doing, completes a global conformational transition that produces maximum inhibition of activity and an even lower affinity for the fourth ligand, excluding it completely. Thus, maximal inhibition is accomplished with less than maximal occupancy of effector sites through a mechanism that displays strong elements of both positive and negative cooperativity.  (+info)

L-serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons. (4/78)

Glial cells support the survival and development of central neurons through the supply of trophic factors. Here we demonstrate that l-serine (l-Ser) and glycine (Gly) also are glia-derived trophic factors. These amino acids are released by astroglial cells and promote the survival, dendritogenesis, and electrophysiological development of cultured cerebellar Purkinje neurons. Although l-Ser and Gly are generally classified as nonessential amino acids, 3-phosphoglycerate dehydrogenase (3PGDH), a key enzyme for their biosynthesis, is not expressed in Purkinje neurons. By contrast, the Bergman glia, a native astroglia in the cerebellar cortex, highly expresses 3PGDH. These data suggest that l-Ser and Gly mediate the trophic actions of glial cells on Purkinje neurons.  (+info)

Specific interactions at the regulatory domain-substrate binding domain interface influence the cooperativity of inhibition and effector binding in Escherichia coli D-3-phosphoglycerate dehydrogenase. (5/78)

The crystal structure of d-3-phosphoglycerate dehydrogenase reveals a limited number of contacts between the regulatory and substrate binding domains of each subunit in the tetrameric enzyme. These occur between the side chains of Arg-339, Arg-405, and Arg-407 in the regulatory domain and main chain carbonyls in the substrate binding domain. In addition, Arg-339 participates in a hydrogen bonding network within the regulatory domain involving Arg-338 and Tyr-410, the C-terminal residue of the enzyme subunit. Mutagenic analysis of these residues produce profound effects on the enzyme's sensitivity to serine, the cooperativity of serine inhibition, and in some cases, the apparent overall conformation of the enzyme. Mutations of Arg-405 and Arg-407, which span the interface where the two domains come together, reduce the cooperativity of inhibition and increase the sensitivity of the enzyme to serine concentration. Serine binding studies with Arg-407 converted to Ala demonstrate that cooperativity of serine binding is also significantly reduced in a manner similar to the reduction in the cooperativity of inhibition. Mutations of Tyr-410 and Arg-338 decrease the sensitivity to serine without an appreciable effect on the cooperativity of inhibition. In the case of Tyr-410, a deletion mutant demonstrates that this effect is due to the loss of the C-terminal carboxyl group rather than the tyrosine side chain. All mutations of Arg-339, with the exception of its conversion to Lys, had profound effects on the stability of the enzyme. In general, those mutants that decrease sensitivity to serine are those that participate mainly in intradomain interactions and may also directly affect the serine binding sites themselves. Those mutants that decrease cooperativity are those that participate in interdomain interaction within the subunit. The observation that the mutants that decrease cooperativity also increase sensitivity to serine suggests a potential separation of pathways between how the simple act of serine binding results in noncooperative active site inhibition in the first place and how serine binding also leads to cooperativity between sites in the native enzyme.  (+info)

Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency--a neurometabolic disorder associated with reduced L-serine biosynthesis. (6/78)

3-phosphoglycerate dehydrogenase (PHGDH) deficiency is a disorder of L-serine biosynthesis that is characterized by congenital microcephaly, psychomotor retardation, and seizures. To investigate the molecular basis for this disorder, the PHGDH mRNA sequence was characterized, and six patients from four families were analyzed for sequence variations. Five patients from three different families were homozygous for a single nucleotide substitution predicted to change valine at position 490 to methionine. The sixth patient was homozygous for a valine to methionine substitution at position 425; both mutations are located in the carboxyterminal part of PHGDH. In vitro expression of these mutant proteins resulted in significant reduction of PHGDH enzyme activities. RNA-blot analysis indicated abundant expression of PHGDH in adult and fetal brain tissue. Taken together with the severe neurological impairment in our patients, the data presented in this paper suggest an important role for PHGDH activity and L-serine biosynthesis in the metabolism, development, and function of the central nervous system.  (+info)

Amino acid residue mutations uncouple cooperative effects in Escherichia coli D-3-phosphoglycerate dehydrogenase. (7/78)

d-3-Phosphoglycerate dehydrogenase from Escherichia coli contains two Gly-Gly sequences that occur at junctions between domains. A previous study (Grant, G. A., Xu, X. L., and Hu, Z. (2000) Biochemistry 39, 7316-7319) determined that the Gly-Gly sequence at the junction between the regulatory and substrate binding domain functions as a hinge between the domains. Mutations in this area significantly decrease the ability of serine to inhibit activity but have little effect on the K(m) and k(cat). Conversely, the present study shows that mutations to the Gly-Gly sequence at the junction of the substrate and nucleotide binding domains, which form the active site cleft, have a significant effect on the k(cat) of the enzyme without substantially altering the enzyme's sensitivity to serine. In addition, mutation of Gly-294, but not Gly-295, has a profound effect on the cooperativity of serine inhibition. Interestingly, even though cooperativity of inhibition can be reduced significantly, there is little apparent effect on the cooperativity of serine binding itself. An additional mutant, G336V,G337V, also reduces the cooperativity of inhibition, but in this case serine binding also is reduced to the point at which it cannot be measured by equilibrium dialysis. The double mutant G294V,G336V demonstrates that strain imposed by mutation at one hinge can be relieved partially by mutation at the other hinge, demonstrating linkage between the two hinge regions. These data show that the two cooperative processes, serine binding and catalytic inhibition, can be uncoupled. Consideration of the allowable torsional angles for the side chains introduced by the mutations yields a range of values for these angles that the glycine residues likely occupy in the native enzyme. A comparison of these values with the torsional angles found for the inhibited enzyme from crystal coordinates provides potential beginning and ending orientations for the transition from active to inhibited enzyme, which will allow modeling of the dynamics of domain movement.  (+info)

3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. (8/78)

l-Serine is synthesized from glycolytic intermediate 3-phosphoglycerate and is an indispensable precursor for the synthesis of proteins, membrane lipids, nucleotides, and neuroactive amino acids d-serine and glycine. We have recently shown that l-serine and its interconvertible glycine act as Bergmann glia-derived trophic factors for cerebellar Purkinje cells. To investigate whether such a metabolic neuron-glial relationship is fundamental to the developing and adult brain, we examined by in situ hybridization and immunohistochemistry the cellular expression of 3-phosphoglycerate dehydrogenase (3PGDH), the initial step enzyme for de novo l-serine biosynthesis in animal cells. At early stages when the neural wall consists exclusively of the ventricular zone, neuroepithelial stem cells expressed 3PGDH strongly and homogeneously. Thereafter, 3PGDH expression was downregulated and eventually disappeared in neuronal populations, whereas its high expression was transmitted to the radial glia and later to astrocytes in the gray and white matters. In addition, 3PGDH was highly expressed throughout development in the olfactory ensheathing glia, a specialized supporting cell that thoroughly ensheathes olfactory nerves. These results establish a fundamental link of the radial glia/astrocyte lineage and olfactory ensheathing glia to l-serine biosynthesis in the brain. We discuss this finding in the context of the hypothesis that 3PGDH expression in these glia cells contributes to energy metabolism in differentiating and differentiated neurons and other glia cells, which are known to be vulnerable to energy loss.  (+info)