(1/849) Adhesion of adhesive resin to dental precious metal alloys. Part I. New precious metal alloys with base metals for resin bonding.

New dental precious metal alloys for resin bonding without alloy surface modification were developed by adding base metals (In, Zn, or Sn). Before this, binary alloys of Au, Ag, Cu, or Pd containing In, Zn, or Sn were studied for water durability and bonding strength with 4-META resin. The adhesion ability of the binary alloys was improved by adding In equivalent to 15% of Au content, Zn equivalent to 20% of Ag content, and In, Zn, or Sn equivalent to 5% of Cu content. There was no addition effect of the base metals on Pd, however 15% of In addition improved adhesion with Pd-based alloys containing equi-atomic % of Cu and Pd. The alloy surfaces were analyzed by XPS and showed that oxides such as In2O3, ZnO, or SnO play an important role in improving the adhesive ability of the alloys.  (+info)

(2/849) Human T lymphocyte priming in vitro by haptenated autologous dendritic cells.

Dendritic cells (DC), generated from adherent peripheral blood mononuclear cells (PBMC) by culturing with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4, were used to study in vitro sensitization of naive, hapten-specific T cells and to analyse cross-reactivities to related compounds. DC were hapten-derivatized with nickel sulphate (Ni) or 2-hydroxyethyl-methacrylate (HEMA), followed by tumour necrosis factor-alpha (TNF-alpha)-induced maturation, before autologous T cells and a cytokine cocktail of IL-1beta, IL-2 and IL-7 were added. After T cell priming for 7 days, wells were split and challenged for another 7 days with Ni or HEMA, and potentially cross-reactive haptens. Hapten-specificity of in vitro priming was demonstrated by proliferative responses to the haptens used for priming but not to the unrelated haptens. Highest priming efficiencies were obtained when both IL-4 and IL-12 were added to the cytokine supplement. Marked interferon-gamma (IFN-gamma) release (up to 4 ng/ml) was found when IL-12 was included in the cultures, whereas IL-5 release (up to 500 pg/ml) was observed after addition of IL-4 alone, or in combination with IL-12. Nickel-primed T cells showed frequent cross-reactivities with other metals closely positioned in the periodic table, i.e. palladium and copper, whereas HEMA-primed T cells showed distinct cross-reactivities with selected methacrylate congeners. Similar cross-reactivities are known to occur in allergic patients. Thus, in vitro T cell priming provides a promising tool for studying factors regulating cytokine synthesis, and cross-reactivity patterns of hapten-specific T cells.  (+info)

(3/849) Phase transformations and age-hardening behaviors related to Au3Cu in Au-Cu-Pd alloys.

Phase transformation behaviors in Au-Cu-Pd alloys were investigated by means of electrical resistivity measurements, hardness tests, X-ray diffraction and transmission electron microscopy. Anisothermal and isothermal annealing were performed. Two types of phase transformations were found, namely related to the single phase of Au3Cu and the coexistent phase of Au3Cu and AuCu I. The latter produced more remarkable hardening than the former. Hardening was brought about by the antiphase domain size effect of Au3Cu ordered phase in the single phase and by the formation of AuCu I ordered phase in the Au3Cu ordered matrix. There are three modes of phase transformation in the coexistent region depending on the composition. Each sequence is discussed.  (+info)

(4/849) Phase transformation mechanisms in (AuCu)1-xPdx pseudobinary alloys by direct aging method.

Phase transformation mechanisms in the AuCu-Pd pseudobinary system were studied by means of electrical resistivity measurements, hardness tests, X-ray diffraction and transmission electron microscopy. A direct aging method was employed to eliminate the otherwise unavoidable ordering that takes place rapidly during quenching into ice brine, hence it is important to distinguish the ordering processes with and without an incubation period. Three phase transformation modes occurred, namely; ordering at grain boundaries and in the grain interior with nucleation and growth mechanism after incubation, and spinodal ordering without any incubation period. The age-hardening of the alloys examined was attributed to AuCu I ordering. Nucleation and growth mechanism followed by twinning occurred in the specimens aged at higher temperatures, while spinodal ordering was seen in specimens aged in lower temperature. The spinodal ordering temperature of AuCu-Pd alloys increased according to Pd content.  (+info)

(5/849) Occupational asthma caused by palladium.

Occupational exposure to complex platinum salts is a well-known cause of occupational asthma. Although there is evidence that platinum refinery workers may also be sensitized to other precious metals, such as palladium or rhodium, no instances of occupational asthma due to an isolated sensitization to palladium have been reported. A case is reported of occupational rhinoconjunctivitis and asthma in a previously healthy worker exposed to the fumes of an electroplating bath containing palladium. There was no exposure to platinum. Sensitization to palladium was documented by skin-prick tests. The skin-prick test was positive with Pd(NH3)4Cl2, but not with (NH4)2PdCl4. Corresponding salts of platinum were all negative. A bronchial provocation test with Pd(NH3)4Cl2 (0.0001% for a total of 315 s, followed by 0.001% for a total of 210 s) led to an early decrease in forced expiratory volume in one second (-35%). A similar exposure (0.001% for a total of 16 min) in an unrelated asthmatic gave no reaction. This case shows that an isolated sensitization to palladium can occur and that respiratory exposure to palladium is a novel cause of metal-induced occupational asthma.  (+info)

(6/849) Anaerobic specimen transport device.

A device is described and evaluated for the anaerobic transport of clinical specimens. The device limits the amount of oxygen entering with the sample to a maximum of 2%, which is rapidly removed by reacting with hydrogen in the presence of a palladium catalyst. The viability on swabs of 12 species of anaerobes, four strains of facultative anaerobes and a strain of Pseudomonas aeruginosa, was maintained during the length of the tests (24 or 48 h). The results demonstrated that this device protected even the more oxygen-sensitive clinical anaerobes from death due to oxygen exposure. This device can be used for swabs as well as for anaerobic collection and liquid and solid specimens.  (+info)

(7/849) Influence of finishing on the electrochemical properties of dental alloys.

Dental alloy surface finishing procedures of may influence their electrochemical behavior, which is used to evaluate their corrosion resistance. We examined the polarization resistance and potentiodynamic polarization profile of the precious-metal alloys, Type 4 gold alloy and silver-palladium alloy, and the base-metal alloys, nickel-chromium alloy, cobalt-chromium alloy, and CP-titanium. Three types of finishing procedure were examined: mirror-finishing using 0.05 micron alumina particles, polishing using #600 abrasive paper and sandblasting. Dissolution of the alloy elements in 0.9% NaCl solution was also measured and compared with the electrochemical evaluation. The corrosion resistance of the dental alloys was found to relate to finishing as follows: The polarization resistance and potentiodynamic polarization behavior revealed that the corrosion resistance improved in the order of sandblasting, #600-abrasive-paper polishing, and mirror-finishing. While the corrosion potential, critical current density and passive current density varied depending on the type of finishing, the transpassive potential remained unchanged. The influence of finishing on the corrosion resistance of precious-metal alloys was less significant than on that of base-metal alloys. A mirror-finishing specimen was recommended for use in evaluation of the corrosion resistance of various dental alloys.  (+info)

(8/849) Development of Ag-Pd-Au-Cu alloy for multiple dental applications. Part 1. Effects of Pd and Cu contents, and addition of Ga or Sn on physical properties and bond with ultra-low fusing ceramic.

Ag-Pd-Au-Cu quaternary alloys consisting of 30-50% Ag, 20-40% Pd, 10-20% Cu and 20% Au (mother alloys) were prepared. Then 5% Sn or 5% Ga was added to the mother alloy compositions, and another two alloy systems (Sn-added alloys and Ga-added alloys) were also prepared. The bond between the prepared alloys and an ultra-low fusing ceramic as well as their physical properties such as the solidus point, liquidus point and the coefficient of thermal expansion were evaluated. The solidus point and liquidus point of the prepared alloys ranged from 802 degrees C to 1142 degrees C and from 931 degrees C to 1223 degrees C, respectively. The coefficient of thermal expansion ranged from 14.6 to 17.1 x 10(-6)/degrees C for the Sn- and Ga-added alloys. In most cases, the Pd and Cu contents significantly influenced the solidus point, liquidus point and coefficient of thermal expansion. All Sn- and Ga-added alloys showed high area fractions of retained ceramic (92.1-100%), while the mother alloy showed relatively low area fractions (82.3%) with a high standard deviation (20.5%). Based on the evaluated properties, six Sn-added alloys and four Ga-added alloys among the prepared alloys were suitable for the application of the tested ultra-low fusing ceramic.  (+info)