The small GTPase RalA targets filamin to induce filopodia. (1/1875)

The Ras-related small GTPases Rac, Rho, Cdc42, and RalA bind filamin, an actin filament-crosslinking protein that also links membrane and other intracellular proteins to actin. Of these GTPases only RalA binds filamin in a GTP-specific manner, and GTP-RalA elicits actin-rich filopods on surfaces of Swiss 3T3 cells and recruits filamin into the filopodial cytoskeleton. Either a dominant negative RalA construct or the RalA-binding domain of filamin 1 specifically block Cdc42-induced filopod formation, but a Cdc42 inhibitor does not impair RalA's effects, which, unlike Cdc42, are Rac independent. RalA does not generate filopodia in filamin-deficient human melanoma cells, whereas transfection of filamin 1 restores the functional response. RalA therefore is a downstream intermediate in Cdc42-mediated filopod production and uses filamin in this pathway.  (+info)

Isosmotic modulation of Ca2+-regulated exocytosis in guinea-pig antral mucous cells: role of cell volume. (2/1875)

1. Exocytotic events and changes of cell volume in mucous cells from guinea-pig antrum were examined by video-enhanced optical microscopy. 2. Acetylcholine (ACh) evoked exocytotic events following cell shrinkage, the frequency and extent of which depended on the ACh concentration. ACh actions were mimicked by ionomycin and thapsigargin, and inhibited by Ca2+-free solution and Ca2+ channel blockers (Ni2+, Cd2+ and nifedipine). Application of 100 microM W-7, a calmodulin inhibitor, also inhibited the ACh-induced exocytotic events. These results indicate that ACh actions are mediated by intracellular Ca2+ concentration ([Ca2+]i) in antral mucous cells. 3. The effects of ion channel blockers on exocytotic events and cell shrinkage evoked by ACh were examined. Inhibition of KCl release (quinine, Ba2+, NPPB or KCl solution) suppressed both the exocytotic events and cell shrinkage evoked by ACh. 4. Bumetanide (inhibition of NaCl entry) or Cl--free solution (increasing Cl- release and inhibition of NaCl entry) evoked exocytotic events following cell shrinkage in unstimulated antral mucous cells and caused further cell shrinkage and increases in the frequency of exocytotic events in ACh-stimulated cells. However, Cl--free solution did not evoke exocytotic events in unstimulated cells in the absence of extracellular Ca2+, although cell shrinkage occurred. 5. To examine the effects of cell volume on ACh-evoked exocytosis, the cell volume was altered by increasing the extracellular K+ concentration. The results showed that cell shrinkage increases the frequency of ACh-evoked exocytotic events and cell swelling decreases them. 6. Osmotic shrinkage or swelling caused the frequency of ACh-evoked exocytotic events to increase. This suggests that the effects of cell volume on ACh-evoked exocytosis under anisosmotic conditions may not be the same as those under isosmotic conditions. 7. In antral mucous cells, Ca2+-regulated exocytosis is modulated by cell shrinkage under isosmotic conditions.  (+info)

Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. (3/1875)

1. In arterioles of the hamster cheek pouch, vasodilatation and vasoconstriction can spread via the conduction of electrical signals through gap junctions between cells that comprise the vessel wall. However, conduction in resistance networks supplying other tissues has received relatively little attention. In anaesthetized hamsters, we have investigated the spread of dilatation and constriction along feed arteries and arterioles of the retractor muscle, which is contiguous with the cheek pouch. 2. When released from a micropipette, acetylcholine (ACh) triggered vasodilatation that spread rapidly along feed arteries external to the muscle and arterioles within the muscle. Responses were independent of changes in wall shear rate, perivascular nerve activity, or release of nitric oxide, indicating cell-to-cell conduction. 3. Vasodilatation conducted without decrement along unbranched feed arteries, yet decayed markedly in arteriolar networks. Thus, branching of the conduction pathway dissipated the vasodilatation. 4. Noradrenaline (NA) or a depolarizing KCl stimulus evoked constriction of arterioles and feed arteries of the retractor muscle that was constrained to the vicinity of the micropipette. This behaviour contrasts sharply with the conduction of vasodilatation in these microvessels and with the conduction of vasoconstriction elicited by NA and KCl in cheek pouch arterioles. 5. Focal electrical stimulation produced constriction that spread rapidly along feed arteries and arterioles. These responses were inhibited by tetrodotoxin or prazosin, confirming the release of NA along perivascular sympathetic nerves, which are absent from arterioles studied in the cheek pouch. Thus, sympathetic nerve activity co-ordinated the contraction of smooth muscle cells as effectively as the conduction of vasodilatation co-ordinated their relaxation. 6. In the light of previous findings in the cheek pouch, the properties of vasoconstriction and vasodilatation in feed arteries and arterioles of the retractor muscle indicate that substantive differences can exist in the nature of signal transmission along microvessels of tissues that differ in structure and function.  (+info)

Single-polymer dynamics in steady shear flow. (4/1875)

The conformational dynamics of individual, flexible polymers in steady shear flow were directly observed by the use of video fluorescence microscopy. The probability distribution for the molecular extension was determined as a function of shear rate, gamma;, for two different polymer relaxation times, tau. In contrast to the behavior in pure elongational flow, the average polymer extension in shear flow does not display a sharp coil-stretch transition. Large, aperiodic temporal fluctuations were observed, consistent with end-over-end tumbling of the molecule. The rate of these fluctuations (relative to the relaxation rate) increased as the Weissenberg number, gamma;tau, was increased.  (+info)

In vivo blood flow abnormalities in the transgenic knockout sickle cell mouse. (5/1875)

The accepted importance of circulatory impairment to sickle cell anemia remains to be verified by in vivo experimentation. Intravital microscopy studies of blood flow in patients are limited to circulations that can be viewed noninvasively and are restricted from deliberate perturbations of the circulation. Further knowledge of sickle blood flow abnormalities has awaited an animal model of human sickle cell disease. We compared blood flow in the mucosal-intestinal microvessels of normal mice with that in transgenic knockout sickle cell mice that have erythrocytes containing only human hemoglobin S and that exhibit a degree of hemolytic anemia and pathological complications similar to the human disease. In sickle cell mice, in addition to seeing blood flow abnormalities such as sludging in all microvessels, we detected decreased blood flow velocity in venules of all diameters. Flow responses to hyperoxia in both normal and sickle cell mice were dramatic, but opposite: Hyperoxia promptly slowed or halted flow in normal mice but markedly enhanced flow in sickle cell mice. Intravital microscopic studies of this murine model provide important insights into sickle cell blood flow abnormalities and suggest that this model can be used to evaluate the causes of abnormal flow and new approaches to therapy of sickle cell disease.  (+info)

Locomotory behaviour of epitheliocytes and fibroblasts on metallic grids. (6/1875)

Behaviour of epitheliocytes and fibroblasts on special discontinuous substrata (metallic grids with square openings of 45x45 microm2) was examined in order to compare the ability of these cells to spread in two mutually perpendicular directions and to stretch over the void spaces. Two cell types with typical fibroblastic morphology, the AGO 1523 line of human foreskin fibroblasts and secondary cultures of mouse embryo fibroblasts, and three cell types with typical epithelial morphology, primary mouse hepatocytes, the IAR-2 line of rat liver cells and the MDCK line of canine kidney epithelial cells (clone 20) were used. We also examined the epitheliocytes (MDCK cells, clone 20) transformed to fibroblast-like morphology by treatment with hepatocyte growth factor/scatter factor (HGF/SF). Time-lapse video microscopy, scanning electron microscopy and immunofluorescence microscopy were used to examine cell reorganizations at various stages of spreading. It was found that early stages of spreading of fibroblasts and epitheliocytes were similar: the cell spread along two bars, perpendicular to each other (bar and crossbar), with the formation of a small triangular lamellar cytoplasm stretched over the opening. Later central parts of the bodies of the fibroblasts retracted from the bars so that the cells remained attached only by their polar lamellae. Successive expansions and partial retractions of these lamellae led to elongation of the cell body crossing several openings of the grid. Epitheliocytes, in contrast to fibroblasts, at the late stages of spreading did not retract their bodies and did not contract polar lamellae. As a result, their central lamellae stretched progressively over the openings. As a result of the treatment of MDCK epitheliocytes with HGF/SF the behaviour of the cells on the grids became similar to that of fibroblasts. It is suggested that these distinct spreading patterns of epitheliocytes and fibroblasts are due to the type-specific differences in the actin-myosin cortex. Experiments with microtubule-specific drugs, colcemid and taxol, indicate that the organization of this cortex is under microtubular control.  (+info)

Transmembrane calcium influx induced by ac electric fields. (7/1875)

Exogenous electric fields induce cellular responses including redistribution of integral membrane proteins, reorganization of microfilament structures, and changes in intracellular calcium ion concentration ([Ca2+]i). Although increases in [Ca2+]i caused by application of direct current electric fields have been documented, quantitative measurements of the effects of alternating current (ac) electric fields on [Ca2+]i are lacking and the Ca2+ pathways that mediate such effects remain to be identified. Using epifluorescence microscopy, we have examined in a model cell type the [Ca2+]i response to ac electric fields. Application of a 1 or 10 Hz electric field to human hepatoma (Hep3B) cells induces a fourfold increase in [Ca2+]i (from 50 nM to 200 nM) within 30 min of continuous field exposure. Depletion of Ca2+ in the extracellular medium prevents the electric field-induced increase in [Ca2+]i, suggesting that Ca2+ influx across the plasma membrane is responsible for the [Ca2+]i increase. Incubation of cells with the phospholipase C inhibitor U73122 does not inhibit ac electric field-induced increases in [Ca2+]i, suggesting that receptor-regulated release of intracellular Ca2+ is not important for this effect. Treatment of cells with either the stretch-activated cation channel inhibitor GdCl3 or the nonspecific calcium channel blocker CoCl2 partially inhibits the [Ca2+]i increase induced by ac electric fields, and concomitant treatment with both GdCl3 and CoCl2 completely inhibits the field-induced [Ca2+]i increase. Since neither Gd3+ nor Co2+ is efficiently transported across the plasma membrane, these data suggest that the increase in [Ca2+]i induced by ac electric fields depends entirely on Ca2+ influx from the extracellular medium.  (+info)

Vesicle deformation by an axial load: from elongated shapes to tethered vesicles. (8/1875)

A sufficiently large force acting on a single point of the fluid membrane of a flaccid phospholipid vesicle is known to cause the formation of a narrow bilayer tube (tether). We analyze this phenomenon by means of general mathematical methods allowing us to determine the shapes of strongly deformed vesicles including their stability. Starting from a free vesicle with an axisymmetric, prolate equilibrium shape, we consider an axial load that pulls (or pushes) the poles of the vesicle apart. Arranging the resulting shapes of strained vesicles in dependence of the axial deformation and of the area difference of monolayers, phase diagrams of stable shapes are presented comprising prolate shapes with or without equatorial mirror symmetry. For realistic values of membrane parameters, we study the force-extension relation of strained vesicles, and we demonstrate in detail how the initially elongated shape of an axially stretched vesicle transforms into a shape involving a membrane tether. This tethering transition may be continuous or discontinuous. If the free vesicle is mirror symmetric, the mirror symmetry is broken as the tether forms. The stability analysis of tethered shapes reveals that, for the considered vesicles, the stable shape is always asymmetric (polar), i.e., it involves only a single tether on one side of the main vesicle body. Although a bilayer tube formed from a closed vesicle is not an ideal cylinder, we show that, for most practical purposes, it is safe to assume a cylindrical geometry of tethers. This analysis is supplemented by the documentation of a prototype experiment supporting our theoretical predictions. It shows that the currently accepted model for the description of lipid-bilayer elasticity (generalized bilayer couple model) properly accounts for the tethering phenomenon.  (+info)