Where are we in genomics? (1/3529)

Genomic studies provide scientists with methods to quickly analyse genes and their products en masse. The first high-throughput techniques to be developed were sequencing methods. A great number of genomes from different organisms have thus been sequenced. Genomics is now shifting to the study of gene expression and function. In the past 5-10 years genomics, proteomics and high-throughput microarray technologies have fundamentally changed our ability to study the molecular basis of cells and tissues in health and diseases, giving a new comprehensive view. For example, in cancer research we have seen new diagnostic opportunities for tumour classification, and prognostication. A new exciting development is metabolomics and lab-on-a-chip techniques (which combine miniaturization and automation) for metabolic studies. However, to interpret the large amount of data, extensive computational development is required. In the coming years, we will see the study of biological networks dominating the scene in Physiology. The great accumulation of genomics information will be used in computer programs to simulate biologic processes. Originally developed for genome analysis, bioinformatics now encompasses a wide range of fields in biology from gene studies to integrated biology (i.e. combination of different data sets from genes to metabolites). This is systems biology which aims to study biological organisms as a whole. In medicine, scientific results and applied biotechnologies arising from genomics will be used for effective prediction of diseases and risk associated with drugs. Preventive medicine and medical therapy will be personalized. Widespread applications of genomics for personalized medicine will require associations of gene expression pattern with diagnoses, treatment and clinical data. This will help in the discovery and development of drugs. In agriculture and animal science, the outcomes of genomics will include improvement in food safety, in crop yield, in traceability and in quality of animal products (dairy products and meat) through increased efficiency in breeding and better knowledge of animal physiology. Genomics and integrated biology are huge tasks and no single lab can pursue this alone. We are probably at the end of the beginning rather than at the beginning of the end because Genomics will probably change Biology to a greater extent than previously forecasted. In addition, there is a great need for more information and better understanding of genomics before complete public acceptance.  (+info)

Identification of metabolic system parameters using global optimization methods. (2/3529)

BACKGROUND: The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. METHODS AND RESULTS: Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA) models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. CONCLUSION: The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.  (+info)

Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. (3/3529)

Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192-base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission.  (+info)

Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. (4/3529)

Intracellular protein degradation decreases with age, altering the important balance between protein synthesis and breakdown. Slowly, protein accumulation events increase causing axonopathy, synaptic deterioration, and subsequent cell death. As toxic species accumulate, autophagy-lysosomal protein degradation pathways are activated. Responses include autophagic vacuoles that degrade damaged cellular components and long-lived proteins, as well as enhanced levels of lysosomal hydrolases. Although such changes correlate with neuronal atrophy in age-related neurodegenerative disorders and in related models of protein accumulation, the autophagic/lysosomal responses appear to be compensatory reactions. Recent studies indicate that protein oligomerization/ aggregation induces autophagy and activates lysosomal protein degradation in an attempt to clear toxic accumulations. Such compensatory responses may delay cell death and account for the gradual nature of protein deposition pathology that can extend over months/years in model systems and years/decades in the human diseases. Correspondingly, enhancement of compensatory pathways shifts the balance from pathogenesis to protection. Positive modulation of protein degradation processes represents a strategy to promote clearance of toxic accumulations and to slow the synaptopathogenesis and associated cognitive decline in aging-related dementias.  (+info)

Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. (5/3529)

Arsenic is a prominent environmental toxicant and carcinogen; however, its molecular mechanism of toxicity and carcinogenicity remains poorly understood. In this study, we performed microarray-based expression profiling on liver of zebrafish exposed to 15 parts/million (ppm) arsenic [As(V)] for 8-96 h to identify global transcriptional changes and biological networks involved in arsenic-induced adaptive responses in vivo. We found that there was an increase of transcriptional activity associated with metabolism, especially for biosyntheses, membrane transporter activities, cytoplasm, and endoplasmic reticulum in the 96 h of arsenic treatment, while transcriptional programs for proteins in catabolism, energy derivation, and stress response remained active throughout the arsenic treatment. Many differentially expressed genes encoding proteins involved in heat shock proteins, DNA damage/repair, antioxidant activity, hypoxia induction, iron homeostasis, arsenic metabolism, and ubiquitin-dependent protein degradation were identified, suggesting strongly that DNA and protein damage as a result of arsenic metabolism and oxidative stress caused major cellular injury. These findings were comparable with those reported in mammalian systems, suggesting that the zebrafish liver coupled with the available microarray technology present an excellent in vivo toxicogenomic model for investigating arsenic toxicity. We proposed an in vivo, acute arsenic-induced adaptive response model of the zebrafish liver illustrating the relevance of many transcriptional activities that provide both global and specific information of a coordinated adaptive response to arsenic in the liver.  (+info)

Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo. (6/3529)

WNK1 and WNK4 are unusual serine/threonine kinases with atypical positioning of the catalytic active-site lysine (WNK: With-No-K[lysine]). Mutations in these WNK kinase genes can cause familial hyperkalemic hypertension (FHHt), an autosomal dominant, hypertensive, hyperkalemic disorder, implicating this novel WNK pathway in normal regulation of BP and electrolyte balance. Full-length (WNK1-L) and short (WNK1-S) kinase-deficient WNK1 isoforms previously have been identified. Importantly, WNK1-S is overwhelmingly predominant in kidney. Recent Xenopus oocyte studies implicate WNK4 in inhibition of both thiazide-sensitive co-transporter-mediated Na+ reabsorption and K+ secretion via renal outer medullary K+ channel and now suggest that WNK4 is inhibited by WNK1-L, itself inhibited by WNK1-S. This study examined WNK pathway gene expression in mouse kidney and its regulation in vivo. Expression of WNK1-S and WNK4 is strongest in distal tubule, dropping sharply in collecting duct and with WNK4 also expressed in thick ascending limb and the macula densa. These nephron segments that express WNK1-S and WNK4 mRNA have major influence on long-term NaCl reabsorption, BP, K+, and acid-base balance, processes that all are disrupted in FHHt. In vivo, this novel WNK pathway responds with significant upregulation of WNK1-S and WNK4 with high K+ intake and reduction in WNK1-S on chronic lowering of K+ or Na+ intake. A two-compartment distal nephron model explains these in vivo findings and the pathophysiology of FHHt well, with WNK and classic aldosterone pathways responding to drivers from K+ balance, extracellular volume, and aldosterone and cross-talk through distal Na+ delivery regulating electrolyte balance and BP.  (+info)

Reconstructing the regulatory kinase pathways of myogenesis from phosphopeptide data. (7/3529)

Multiple kinase activities are required for skeletal muscle differentiation. However, the mechanisms by which these kinase pathways converge to coordinate the myogenic process are unknown. Using multiple phosphoprotein and phosphopeptide enrichment techniques we obtained phosphopeptides from growing and differentiating C2C12 muscle cells and determined specific peptide sequences using LC-MS/MS. To place these phosphopeptides into a rational context, a bioinformatics approach was used. Phosphorylation sites were matched to known site-specific and to site non-specific kinase-substrate interactions, and then other substrates and upstream regulators of the implicated kinases were incorporated into a model network of protein-protein interactions. The model network implicated several kinases of known relevance to myogenesis including AKT, GSK3, CDK5, p38, DYRK, and MAPKAPK2 kinases. This combination of proteomics and bioinformatics technologies should offer great utility as the volume of protein-protein and kinase-substrate information continues to increase.  (+info)

A network-based analysis of polyanion-binding proteins utilizing yeast protein arrays. (8/3529)

The high affinity of certain cellular polyanions for many proteins (polyanion-binding proteins (PABPs)) has been demonstrated previously. It has been hypothesized that such polyanions may be involved in protein structure stabilization, stimulation of folding through chaperone-like activity, and intra- and extracellular protein transport as well as intracellular organization. The purpose of the proteomics studies reported here was to seek evidence for the idea that the nonspecific but high affinity interactions of PABPs with polyanions have a functional role in intracellular processes. Utilizing yeast protein arrays and five biotinylated cellular polyanion probes (actin, tubulin, heparin, heparan sulfate, and DNA), we identified proteins that interact with these probes and analyzed their structural and amino acid sequence requirements as well as their predicted functions in the yeast proteome. We also provide evidence for the existence of a network-like system for PABPs and their potential roles as critical hubs in intracellular behavior. This investigation takes a first step toward achieving a better understanding of the nature of polyanion-protein interactions within cells and introduces an alternative way of thinking about intracellular organization.  (+info)