Induction of macrophage migration inhibitory factor in human ovary by human chorionic gonadotrophin. (1/835)

The role of macrophage migration inhibitory factor (MIF) in human ovarian function remains obscure. The aim of this study was to investigate how MIF was related to ovulation by quantitative analysis of serum, follicular fluid and culture medium of granulosa cells obtained from in-vitro fertilization (IVF) and embryo transfer patients. Serum MIF concentrations in ovarian stimulation cycles for IVF-embryo transfer were higher at day 1 (median 92.6 ng/ml), which took place 35 h after human chorionic gonadotrophin (HCG) administration and just before the retrieval of oocytes, than those before day -6 (12.1 ng/ml), at day -5 to about day 0 (17.5 ng/ml) or at day 2 to about day 14 (8.2 ng/ml). MIF concentrations in the follicular fluid (113.4 ng/ml) obtained in ovarian stimulation cycles for IVF-embryo transfer were significantly higher than in serum (72.0 ng/ml) collected at the same time. MIF concentrations in the follicular fluid in natural cycles were higher in the ovulatory phase (51.6 ng/ml) than in the late follicular phase (13.8 ng/ml). MIF concentrations in the culture media of granulosa cells increased from 3.2 ng/ml to 7.2 ng/ml with HCG stimulation, and decreased from 2.4 ng/ml to 1.2 ng/ml when stimulation was withheld. These results indicate that HCG can induce the elevation of serum and follicular fluid MIF concentrations through the stimulation of ovarian cells, and that MIF is probably involved in the mechanism of ovulation.  (+info)

Equilibrium and transient intermediates in folding of human macrophage migration inhibitory factor. (2/835)

Acid, guanidinium-Cl and urea denaturations of recombinant human macrophage migration inhibitory factor (MIF) were measured using CD and fluorimetry. The acid-induced denaturation was followed by CD at 200, 222, and 278 nm and by tryptophan fluorescence. All four probes revealed an acid-denatured state below pH 3 which resembled a typical molten globule. The pH transition is not two-state as the CD data at 222 nm deviated from all other probes. Urea and guanidinium-Cl denaturations (pH 7, 25 degrees C) both gave an apparent DeltaGU app H2O of 31 +/- 3 kJ.mol-1 when extrapolated to zero denaturant concentration. However, denaturation transitions recorded by fluorescence (at the same protein concentration) occurred at lower urea or guanidinium-Cl concentrations, consistent with an intermediate in the course of MIF denaturation. CD at 222 nm was not very sensitive to protein concentration (in 10-fold range) even though size-exclusion chromatogryphy (SEC) revealed a dimer-monomer dissociation prior to MIF unfolding. Refolding experiments were performed starting from acid, guanidinium-Cl and urea-denatured states. The kinetics were multiphasic with at least two folding intermediates. The intrinsic rate constant of the main folding phase was 5.0 +/- 0.5 s-1 (36.6 degrees C, pH 7) and its energy of activation 155 +/- 12 kJ.mol-1.  (+info)

Murine macrophage-lymphocyte interactions: scanning electron microscopic study. (3/835)

Light and scanning electron microscopic observations revealed murine macrophage-lymphocyte interactions involving the initial contact of peritoneal, spleen, or thymus lymphocytes with peritoneal macrophage processes or microprocesses followed by clustering of lymphocytes over the central nuclear area of the macrophages. Lymphocyte-lymphocyte clustering was not observed in the absence of macrophages. Attachment and subsequent clustering appeared not to require the presence of serum or antigen; the attachment of allogeneic or xenogeneic lymphocytes was comparable to that seen in the syngeneic system, but central clustering of these lymphocytes failed to occur. No attachment or clustering was observed when thymic lymphocytes were cultured with thymus derived fibroblasts rather than with peritoneal macrophages. Lymphocyte attachment to immune, antigen-activated, syngeneic macrophages occurred more rapidly than that to normal unstimulated syngeneic macrophages; however, lymphocytes attached to the "activated" macrophages appeared to be killed by a nonphagocytic mechanism. A similar increase in the rate of lymphocyte attachment to macrophages occurred in the presence of migration inhibitory factor. Subsequent lymphocyte clustering on macrophages was observed in the migration inhibitory factor-stimulated cultures. In addition, lymphocyte-macrophage interactions similar to those in vitro were observed to occur in vivo on intraperitoneally implanted cover slips.  (+info)

A switch in the cellular localization of macrophage migration inhibitory factor in the rat testis after ethane dimethane sulfonate treatment. (4/835)

Macrophage migration inhibitory factor (MIF), one of the first cytokines to be discovered, has recently been localized to the Leydig cells in adult rat testes. In the following study, the response of MIF to Leydig cell ablation by the Leydig cell-specific toxin ethane dimethane sulfonate (EDS) was examined in adult male rats. Testicular MIF mRNA and protein in testicular interstitial fluid measured by ELISA and western blot were only marginally reduced by EDS treatment, in spite of the fact that the Leydig cells were completely destroyed within 7 days. Immunohistochemistry using an affinity-purified anti-mouse MIF antibody localized MIF exclusively to the Leydig cells in control testes. At 7 days post-EDS treatment, there were no MIF immunopositive Leydig cells in the interstitium, although distinct MIF immunostaining was observed in the seminiferous tubules, principally in Sertoli cells and residual cytoplasm, and some spermatogonia. A few peritubular and perivascular cells were also labelled at this time, which possibly represented mesenchymal Leydig cell precursors. At 14 and 21 days, Sertoli cell MIF immunoreactivity was observed in only a few tubule cross-sections, while some peritubular and perivascular mesenchymal cells and the re-populating immature Leydig cells were intensely labeled. At 28 days after EDS-treatment, the MIF immunostaining pattern was identical to that of untreated and control testes. The switch in the compartmentalization of MIF protein at 7 days after EDS-treatment was confirmed by western blot analysis of interstitial tissue and seminiferous tubules separated by mechanical dissection. These data establish that Leydig cell-depleted testes continue to produce MIF, and suggest the existence of a mechanism of compensatory cytokine production involving the Sertoli cells. This represents the first demonstration of a hitherto unsuspected pattern of cellular interaction between the Leydig cells and the seminiferous tubules which is consistent with an essential role for MIF in male testicular function.  (+info)

Characterization of catalytic centre mutants of macrophage migration inhibitory factor (MIF) and comparison to Cys81Ser MIF. (5/835)

Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  (+info)

Expression of macrophage migration inhibitory factor transcript and protein by first-trimester human trophoblasts. (6/835)

Macrophage migration inhibitory factor (MIF) was originally identified for its capacity to inhibit the random migration of macrophages in vitro. To date, the role of MIF as a pro-inflammatory cytokine, pituitary hormone, and counter-regulator of glucocorticoid action on the immune response is commonly recognized. Although recent studies suggest an involvement of MIF in reproduction, no data exist on the expression of this cytokine in early human pregnancy. In this study, we evaluated the presence of MIF protein and mRNA in specimens of chorionic villi from first-trimester human placenta. Tissues were obtained at 6-10 wk of gestation and analyzed by Western blotting, reverse transcription-polymerase chain reaction, and immunohistochemistry. Our results demonstrate that human villous tissue is a novel site of MIF synthesis. In addition, immunohistochemical analysis identified MIF protein in the cytotrophoblasts of both the inner layer of villi and in the trophoblastic cell islands. We speculate that in view of its proinflammatory features, MIF might play a critical role in human implantation and in early embryonic development.  (+info)

Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. (7/835)

Macrophage migration inhibitory factor (MIF) is an important pro-inflammatory mediator with the unique ability to counter-regulate the inhibitory effects of glucocorticoids on immune cell activation. MIF is released from cells in response to glucocorticoids, certain pro-inflammatory stimuli, and mitogens and acts to regulate glucocorticoid action on the ensuing inflammatory response. To gain insight into the molecular mechanism of MIF action, we have examined the role of MIF in the proliferation and intracellular signaling events of the well characterized, NIH/3T3 fibroblast cell line. Both endogenously secreted and exogenously added MIFs stimulate the proliferation of NIH/3T3 cells, and this response is associated with the activation of the p44/p42 extracellular signal-regulated (ERK) mitogen-activated protein kinases (MAP). The MIF-induced activation of these kinases was sustained for a period of at least 24 h and was dependent upon protein kinase A activity. We further show that MIF regulates cytosolic phospholipase A2 activity via a protein kinase A and ERK dependent pathway and that the glucocorticoid suppression of cytokine-induced cytoplasmic phospholipase A2 activity and arachidonic acid release can be reversed by the addition of recombinant MIF. These studies indicate that the sustained activation of p44/p42 MAP kinase and subsequent arachidonate release by cytoplasmic phospholipase A2 are important features of the immunoregulatory and intracellular signaling events initiated by MIF and provide the first insight into the mechanisms that underlie the pro-proliferative and inflammatory properties of this mediator.  (+info)

An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. (8/835)

BACKGROUND: Macrophage migration inhibitory factor (MIF) has been shown to counterregulate glucocorticoid action and to play an essential role in the activation of macrophages and T cells in vivo. MIF also may function as an autocrine growth factor in certain cell systems. We have explored the role of MIF in the growth of the 38C13 B cell lymphoma in C3H/HeN mice, a well-characterized syngeneic model for the study of solid tumor biology. MATERIALS AND METHODS: Tumor-bearing mice were treated with a neutralizing anti-MIF monoclonal antibody and the tumor response assessed grossly and histologically. Tumor capillaries were enumerated by immunohistochemistry and analyzed for MIF expression. The effect of MIF on endothelial cell proliferation was studied in vitro, utilizing both specific antibody and antisense oligonucleotide constructs. The role of MIF in angiogenesis also was examined in a standard Matrigel model of new blood vessel formation in vivo. RESULTS: The administration of anti-MIF monoclonal antibodies to mice was found to reduce significantly the growth and the vascularization of the 38C13 B cell lymphoma. By immunohistochemistry, MIF was expressed predominantly within the tumor-associated neovasculature. Cultured microvascular endothelial cells, but not 38C13 B cells, produced MIF protein and required its activity for proliferation in vitro. Anti-MIF monoclonal antibody also was found to markedly inhibit the neovascularization response elicited by Matrigel implantation. CONCLUSION: These data significantly expand the role of MIF in host responses, and suggest a new target for the development of anti-neoplastic agents that inhibit tumor neovascularization.  (+info)