Characterization of the genotoxicity of anthraquinones in mammalian cells. (1/160)

Naturally occurring 1,8-dihydroxyanthraquinones are under consideration as possible carcinogens. Here we wanted to elucidate a possible mechanism of their genotoxicity. All three tested anthraquinones, emodin, aloe-emodin, and danthron, showed capabilities to inhibit the non-covalent binding of bisbenzimide Hoechst 33342 to isolated DNA and in mouse lymphoma L5178Y cells comparable to the topoisomerase II inhibitor and intercalator m-amsacrine. In a cell-free decatenation assay, emodin exerted a stronger, danthron a similar and aloe-emodin a weaker inhibition of topoisomerase II activity than m-amsacrine. Analysis of the chromosomal extent of DNA damage induced by these anthraquinones was performed in mouse lymphoma L5178Y cells. Anthraquinone-induced mutant cell clones showed similar chromosomal lesions when compared to the topoisomerase II inhibitors etoposide and m-amsacrine, but were different from mutants induced by the DNA alkylator ethyl methanesulfonate. These data support the idea that inhibition of the catalytic activity of topoisomerase II contributes to anthraquinone-induced genotoxicity and mutagenicity.  (+info)

Evaluation of the mouse lymphoma tk assay (microwell method) as an alternative to the in vitro chromosomal aberration test. (2/160)

In order to evaluate the utility of the mouse lymphoma assay (MLA) for detecting in vitro clastogens and spindle poisons and to compare it with the in vitro chromosomal aberration test (CA), we conducted an international collaborative study of the MLA that included 45 Japanese laboratories and seven overseas laboratories under the cooperation of the Ministry of Health and Welfare of Japan and the Japanese Pharmaceutical Manufacturer's Association. We examined 40 chemicals; 33 were reportedly positive in the CA but negative in the bacterial reverse mutation assay, six were negative in both assays and one was positive in both. We assayed mutations of the thymidine kinase (TK) locus (tk) of L5178Y tk +/- mouse lymphoma cells using the microwell method. According to our standard protocol, cells were exposed to the chemical for 3 h, cultured for 2 days and TK-deficient mutants were expressed in 96-well plates under trifluorothymidine. Each chemical was coded and tested by two or three laboratories. Among the 34 CA-positive chemicals, positive MLA results were obtained for 20 and negative results were obtained for nine. The remaining five chemicals were inconclusive or equivocal because of discrepant inter-laboratory results or reproduced discrepant results, respectively. Among the six CA-negative chemicals, one was negative in the MLA, two were positive and three were inconclusive. Thus, the MLA could detect only 59% (20/34) of CA-positive chemicals. We concluded that the MLA was not as sensitive as the CA. Some MLA-negative chemicals evoked positive responses in the CA only after long continuous treatment. These might also be genotoxic in the MLA with long continuous treatment. Improvement of the MLA protocol, including alteration of the duration of the treatment, might render the MLA as sensitive as the CA.  (+info)

The need for long-term treatment in the mouse lymphoma assay. (3/160)

The L5178Y tk +/- mouse lymphoma assay (MLA) has been widely used as a genotoxicity test for the detection of mutagens and clastogens. The standard MLA, as well as other mammalian cell gene mutation assays, usually employs a short treatment period (3-6 h). Our previous report, however, suggested that such short treatments may be insufficient for detecting some clastogens and spindle poisons. For the present study, we introduced and evaluated a longer treatment (24 h) in the MLA. We examined 15 chemicals which were evaluated as negative or inconclusive in the short-term study. Cells were exposed to the chemical for 24 h without S9 mix, cultured for 2 days and then thymidine kinase-deficient mutants were selected in 96-well microtiter plates under trifluorothymidine. Eleven chemicals yielded positive responses in the 24 h treatment MLA. They included nucleoside analogs (2'-deoxycoformycin and dideoxycytidine), a base analog (1,3-dimethylxanthine) and spindle poisons (colchicine and vinblastine sulfate), all of which do not directly affect DNA, but bring about mutations and chromosome alterations through nucleoside metabolism and chromosome segregation. Because the mutagenicities of these non-DNA targeting chemicals appear to be cell cycle dependent, treatment extending over more than one cell cycle may be required for their effect. Combining results from the present and previous studies, 31 of 34 (91%) chromosome aberration-positive chemicals exhibited positive responses in the MLA, suggesting that the sensitivity of the MLA with 24 h treatment periods approaches that of the chromosome aberration test.  (+info)

Intracellular iron status as a hallmark of mammalian cell susceptibility to oxidative stress: a study of L5178Y mouse lymphoma cell lines differentially sensitive to H(2)O(2). (4/160)

The redox properties of iron make this metal a key participant in oxygen-mediated toxicity. Accordingly, L5178Y (LY) mouse lymphoma cell lines, which display a unique inverse cross-sensitivity to ionizing radiation (IR) and hydrogen peroxide (H(2)O(2)), are a suitable model for the study of possible differences in the constitutive control of intracellular iron availability. We report here that the level of iron in the cytosolic labile iron pool (LIP), ie, potentially active in the Fenton reaction, is more than 3-fold higher in IR-resistant, H(2)O(2)-sensitive (LY-R) cells than in IR-sensitive, H(2)O(2)-resistant (LY-S) cells. This difference is associated with markedly greater content of ferritin H-subunits (H-Ft) in LY-S than in LY-R cells. Our results show that different expression of H-Ft in LY cells is a consequence of an up-regulation of H-Ft mRNA in the LY-S mutant cell line. In contrast, posttranscriptional control of iron metabolism mediated by iron-responsive element-iron regulatory proteins (IRPs) interaction is similar in the 2 cell lines, although IRP1 protein levels in iron-rich LY-R cells are twice those in iron-deficient LY-S cells. In showing that LY cell lines exhibit 2 different patterns of intracellular iron regulation, our results highlight both the role of high LIP in the establishment of pro-oxidant status in mammalian cells and the antioxidant role of ferritin. (Blood. 2000;95:2960-2966)  (+info)

Supra-additive genotoxicity of a combination of gamma-irradiation and ethyl methanesulfonate in mouse lymphoma L5178Y cells. (5/160)

While testing for genotoxicity is usually performed on single chemicals, exposure of humans always comprises a number of genotoxic agents. The investigation of potentially synergistic effects of combinations therefore is an important issue in toxicology. Combinations of 511 keV gamma-radiation with the chemical alkylating agent ethyl methane-sulfonate were investigated in the in vitro micronucleus test in mouse lymphoma L5178Y cells. With combinations in the low dose linear effect range for the individual agents (0. 25-2 Gy and 0.8-3.2 mM, respectively), supra-additivity by 34-86% was seen. The synergism was more pronounced at the higher dose levels. Supra-additivity was confirmed in experiments using cytochalasin B and analyzing binucleate cells only, to control for putative effects on the cell cycle. Statistical significance was shown by a 2-factor analysis of variance with interaction. The results indicate that damage to DNA by gamma-radiation and alkylation could affect different rate limiting steps in the formation of micronuclei. Further investigations will have to show whether the observations are of general validity, in particular, whether other end-points of genotoxicity produce the same results and whether the degree of supra-additivity is always dose dependent. The latter would have a strong impact on risk assessment for mixtures at low doses.  (+info)

Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates. (6/160)

The mutagenic effect of low linear energy transfer ionizing radiation is reduced for a given dose as the dose rate (DR) is reduced to a low level, a phenomenon known as the direct DR effect. Our reanalysis of published data shows that for both somatic and germ-line mutations there is an opposite, inverse DR effect, with reduction from low to very low DR, the overall dependence of induced mutations being parabolically related to DR, with a minimum in the range of 0.1 to 1.0 cGy/min (rule 1). This general pattern can be attributed to an optimal induction of error-free DNA repair in a DR region of minimal mutability (MMDR region). The diminished activation of repair at very low DRs may reflect a low ratio of induced ("signal") to spontaneous background DNA damage ("noise"). Because two common DNA lesions, 8-oxoguanine and thymine glycol, were already known to activate repair in irradiated mammalian cells, we estimated how their rates of production are altered upon radiation exposure in the MMDR region. For these and other abundant lesions (abasic sites and single-strand breaks), the DNA damage rate increment in the MMDR region is in the range of 10% to 100% (rule 2). These estimates suggest a genetically programmed optimatization of response to radiation in the MMDR region.  (+info)

Cell cycle and LET dependence for radiation-induced mutation: a possible mechanism for reversed dose-rate effect. (7/160)

A previous study of the mutagenic action of 252Cf radiation in mouse L5178Y cells showed that the mutation frequency was higher when the dose was chronic rather than acute, which was in sharp contrast to the effects reported for gamma-rays (Nakamura and Sawada, 1988). A subsequent study using synchronized cells revealed that the cells at the G2/M stage were uniquely sensitive to mutation induction by 252Cf radiation but not to gamma-rays (Tauchi et al., 1993). A long phase cell population was first subjected to conditioning gamma or 252Cf radiation doses at different dose-rates. The cell cycle distribution of these cells was then observed, and they were then exposed to 252Cf radiation, and the mutation rate was determined. The G2/M fraction increased by 3- to 4-fold when the conditioning doses (2 Gy of gamma or 1 Gy of 252Cf radiation) were delivered chronically over 10 h, but only slightly when the same doses were delivered over a 1 h period or less. Subsequent 252Cf irradiation gave higher mutation frequencies in the cells pre-irradiated with gamma-rays over a protracted period of time than in those exposed with the higher dose-rate gamma-rays. These results suggest that the radiation-induced G2 block could be at least partly (but not totally) responsible for this reverse dose-rate effect (Tauchi et al. 1996). Possible factors which cause the hyper-sensitivity of G2/M cells to mutation induction by neutrons will be discussed.  (+info)

A subset of cytolytic dendritic cells in rat. (8/160)

Dendritic cells (DCs) are a rare population of leukocytes specialized in Ag processing and presentation to T cells. We have previously shown that cultured rat splenic DCs exhibit a cytotoxic activity against selected target cells. In this study, we analyzed this function in DCs freshly prepared from lymphoid organs using the DC-specific OX62 mAb and magnetic beads. Freshly extracted splenic DCs, but not lymph node and thymic DCs, exhibited a strong and moderate cytotoxic activity against YAC-1 and K562 target cells, respectively. FACS analyses showed that spleen contained a minor subset (10-15%) of CD4(+) and class II(int) DCs that also expressed the OX41 Ag and the lymphoid-related Ags CD5 and CD90 (Thy-1) and a major (80-85%) subset of CD4(-)/OX41(-)/CD5(-) and class II(int) DCs. The cytotoxic activity of splenic DCs was strictly restricted to the CD4(-) DCs, a subset poorly represented in LN and thymus. Contrasting with our previous report using cultured splenic DCs, freshly isolated splenic DCs killed YAC-1 cells using a Ca(2+)-independent mechanism, but this function did not appear mediated by Fas ligand, TNF-related apoptosis-inducing ligand, or TNF-alpha. Therefore, rat DCs contain a subset of naturally cytolytic cells that could play a role in both innate and acquired immune responses. Together with our previous report, these data suggest that rat DCs can use two mechanisms of cytotoxicity depending on their maturation/activation state.  (+info)