Evidence for conservation of the vasopressin/oxytocin superfamily in Annelida. (1/320)

Annetocin is a structurally and functionally oxytocin-related peptide isolated from the earthworm Eisenia foetida. We present the characterization of the annetocin cDNA. Sequence analyses of the deduced precursor polypeptide revealed that the annetocin precursor is composed of three segments: a signal peptide, an annetocin sequence flanked by a Gly C-terminal amidation signal and a Lys-Arg dibasic processing site, and a neurophysin domain, similar to other oxytocin family precursors. The proannetocin showed 37.4-45.8% amino acid homology to other prohormones. In the neurophysin domain, 14 cysteines and amino acid residues essential for association of a neurophysin with a vasopressin/oxytocin superfamily peptide were conserved, suggesting that the Eisenia neurophysin can bind to annetocin. Furthermore, in situ hybridization experiments demonstrated that the annetocin gene is expressed exclusively in neurons of the central nervous system predicted to be involved in regulation of reproductive behavior. These findings confirm that annetocin is a member of the vasopressin/oxytocin superfamily. This is the first identification of the cDNA encoding the precursor of an invertebrate oxytocin-related peptide and also the first report of the identification of an annelid vasopressin/oxytocin-related precursor.  (+info)

Expression and developmental regulation of the Hydra-RFamide and Hydra-LWamide preprohormone genes in Hydra: evidence for transient phases of head formation. (2/320)

Hydra magnipapillata has three distinct genes coding for preprohormones A, B, and C, each yielding a characteristic set of Hydra-RFamide (Arg-Phe-NH2) neuropeptides, and a fourth gene coding for a preprohormone that yields various Hydra-LWamide (Leu-Trp-NH2) neuropeptides. Using a whole-mount double-labeling in situ hybridization technique, we found that each of the four genes is specifically expressed in a different subset of neurons in the ectoderm of adult Hydra. The preprohormone A gene is expressed in neurons of the tentacles, hypostome (a region between tentacles and mouth opening), upper gastric region, and peduncle (an area just above the foot). The preprohormone B gene is exclusively expressed in neurons of the hypostome, whereas the preprohormone C gene is exclusively expressed in neurons of the tentacles. The Hydra-LWamide preprohormone gene is expressed in neurons located in all parts of Hydra with maxima in tentacles, hypostome, and basal disk (foot). Studies on animals regenerating a head showed that the prepro-Hydra-LWamide gene is expressed first, followed by the preprohormone A and subsequently the preprohormone C and the preprohormone B genes. This sequence of events could be explained by a model based on positional values in a morphogen gradient. Our head-regeneration experiments also give support for transient phases of head formation: first tentacle-specific preprohormone C neurons (frequently associated with a small tentacle bud) appear at the center of the regenerating tip, which they are then replaced by hypostome-specific preprohormone B neurons. Thus, the regenerating tip first attains a tentacle-like appearance and only later this tip develops into a hypostome. In a developing bud of Hydra, tentacle-specific preprohormone C neurons and hypostome-specific preprohormone B neurons appear about simultaneously in their correct positions, but during a later phase of head development, additional tentacle-specific preprohormone C neurons appear as a ring at the center of the hypostome and then disappear again. Nerve-free Hydra consisting of only epithelial cells do not express the preprohormone A, B, or C or the LWamide preprohormone genes. These animals, however, have a normal phenotype, showing that the preprohormone A, B, and C and the LWamide genes are not essential for the basic pattern formation of Hydra.  (+info)

Transcript titers of ecdysteroid receptor components vary between tissues and stages during Drosophila development. (3/320)

In Drosophila, the ecdysteroids trigger the key regulatory cascades controlling the coordinated changes in the developmental pathway of molting and metamorphosis. Ecdysone action is mediated by a heterodimer consisting of the three ecdysone receptor (EcR) isoforms and the ultraspiracle proteins (USP). Heterodimers of these proteins bind to the ecdysone response element and ecdysone to modulate gene transcription. In this study, we developed a competitive reverse transcription polymerase chain reaction (RT-PCR) method to quantify the transcripts of functional ecdysone receptor components in individual tissues and for the whole body. The relatively small amount of variation in usp transcripts of the different tissues indicates that this gene does not perform a spatially restricted function in the late third instar wandering larvae while EcR isoforms were expressed in a more tissue-restricted pattern in the same stage. EcR-B1 was expressed at higher levels in larval tissues that are fated for histolysis, whereas EcR-A predominates in the imaginal discs. This result supports the hypothesis that a particular metamorphic response requires particular EcR isoforms. The transcript levels of the functional ecdysone receptor components fluctuate dramatically during development, suggesting that the regulations of the transcriptional and posttranscriptional levels of these genes play some role in ecdysteroid response during Drosophila development.  (+info)

1-Methyladenine production from ATP by starfish ovarian follicle cells. (4/320)

1-Methyladenine (1-MeAde), the oocyte maturation-inducing substance in starfish, is produced by ovarian follicle cells upon stimulation with a gonad-stimulating substance (GSS) released from the radial nerves. We have shown previously that GSS causes a reduction in the intracellular levels of ATP coincident with 1-MeAde production. The present study examined whether the adenine molecule of 1-MeAde is directly derived from ATP. When isolated follicle cells from the starfish Asterina pectinifera were preloaded with [U-14C]adenine or [U-14C]adenosine, there was an increase in the intracellular levels of radiolabeled adenine nucleotides, particularly ATP. Following further incubation with GSS, the intracellular levels of radiolabeled ATP decreased, concomitant with a marked increase in the levels of [14C]1-MeAde in the medium. The amount of ATP consumed under the influence of GSS was similar to the amount of 1-MeAde produced. However, there was no change in the levels of ADP and AMP regardless of the presence or absence of GSS. These findings strongly suggest that 1-MeAde is synthesized from ATP as a substrate in follicle cells under the influence of GSS. Furthermore, using [methyl-3H]methionine, the methyl group of 1-MeAde was found to be derived from methionine. Thus GSS appears to stimulate the synthesis of 1-MeAde from ATP via the methylation process in starfish ovarian follicle cells.  (+info)

Advances in direct methods for protein crystallography. (5/320)

Recent advances in ab initio direct methods have enabled the solution of crystal structures of small proteins from native X-ray data alone, that is, without the use of fragments of known structure or the need to prepare heavy-atom or selenomethionine derivatives, provided that the data are available to atomic resolution. These methods are also proving to be useful for locating the selenium atoms or other anomalous scatterers in the multiple wavelength anomalous diffraction phasing of larger proteins at lower resolution.  (+info)

Egg-laying hormone peptides in the aplysiidae family. (6/320)

The neuropeptidergic bag cells of the marine mollusc Aplysia californica are involved in the egg-laying behavior of the animal. These neurosecretory cells synthesize an egg-laying hormone (ELH) precursor protein, yielding multiple bioactive peptides, including ELH, several bag cell peptides (BCP) and acidic peptide (AP). While immunohistochemical studies have involved a number of species, homologous peptides have been biochemically characterized in relatively few Aplysiidae species. In this study, a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and electrospray ionization Fourier transform ion cyclotron resonance MS is used to characterize and compare the ELH peptides from related opisthobranch molluscs including Aplysia vaccaria and Phyllaplysia taylori. The peptide profiles of bag cells from these two Aplysiidae species are similar to that of A. californica bag cells. In an effort to characterize further several of these peptides, peptides from multiple groups of cells of each species were extracted, and microbore liquid chromatography was used to separate and isolate them. Several MS-based sequencing approaches are applied to obtain the primary structures of bag cell peptides and ELH. Our studies reveal that (&agr;)-BCPs are 100 % conserved across all species studied. In addition, the complete sequences of (&egr;)-BCP and ELH of A. vaccaria were determined. They show a high degree of homology to their counterparts in A. californica, with only a few amino acid residue substitutions.  (+info)

Expression of a recombinant molt-inhibiting hormone of the kuruma prawn Penaeus japonicus in Escherichia coli. (7/320)

The crustacean molt-inhibiting hormone (MIH) suppresses ecdysteroid synthesis by the Y-organ. The MIH of the kuruma prawn Penaeus japonicus has recently been isolated and its cDNA cloned. In this study, we expressed the MIH in Escherichia coli to obtain a large quantity of this hormone with biological activity. The MIH cDNA was processed and ligated into an expression plasmid. E. coli was transformed with this plasmid, and then the recombinant MIH (r-MIH) was expressed. The r-MIH was put through the refolding reaction and was purified by reverse-phase HPLC. N-terminal amino acid sequence and time-of-flight mass spectral analyses supported the idea that the r-MIH had the entire sequence. By in vitro bioassay using the Y-organ of the crayfish, the r-MIH was found to be comparable to natural MIH in inhibiting ecdysteroid synthesis.  (+info)

A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. (8/320)

Molting or ecdysis is the most fundamentally important process in arthropod life history, because shedding of the exoskeleton is an absolute prerequisite for growth and metamorphosis. Although the hormonal mechanisms driving ecdysis in insects have been studied extensively, nothing is known about these processes in crustaceans. During late premolt and during ecdysis in the crab Carcinus maenas, we observed a precise and reproducible surge in hemolymph hyperglycemic hormone (CHH) levels, which was over 100-fold greater than levels seen in intermolt animals. The source of this hormone surge was not from the eyestalk neurosecretory tissues but from previously undescribed endocrine cells (paraneurons), in defined areas of the foregut and hindgut. During premolt (the only time when CHH is expressed by these tissues), the gut is the largest endocrine tissue in the crab. The CHH surge, which is a result of an unusual, almost complete discharge of the contents of the gut endocrine cell, regulates water and ion uptake during molting, thus allowing the swelling necessary for successful ecdysis and the subsequent increase in size during postmolt. This study defines an endocrine brain/gut axis in the arthropods. We propose that the ionoregulatory process controlled by CHH may be common to arthropods, in that, for insects, a similar mechanism seems to be involved in antidiuresis. It also seems likely that a cascade of very precisely coordinated release of (neuro) hormones controls ecdysis.  (+info)