EBV-associated mononucleosis leads to long-term global deficit in T-cell responsiveness to IL-15. (1/75)

In mice, interleukin-7 (IL-7) and IL-15 are involved in T-cell homeostasis and the maintenance of immunologic memory. Here, we follow virus-induced responses in infectious mononucleosis (IM) patients from primary Epstein-Barr virus (EBV) infection into long-term virus carriage, monitoring IL-7 and IL-15 receptor (IL-R) expression by antibody staining and cytokine responsiveness by STAT5 phosphorylation and in vitro proliferation. Expression of IL-7Ralpha was lost from all CD8+ T cells, including EBV epitope-specific populations, during acute IM. Thereafter, expression recovered quickly on total CD8+ cells but slowly and incompletely on EBV-specific memory cells. Expression of IL-15Ralpha was also lost in acute IM and remained undetectable thereafter not just on EBV-specific CD8+ populations but on the whole peripheral T- and natural killer (NK)-cell pool. This deficit, correlating with defective IL-15 responsiveness in vitro, was consistently observed in patients up to 14 years after IM but not in patients after cytomegalovirus (CMV)-associated mononucleosis, or in healthy EBV carriers with no history of IM, or in EBV-naive individuals. By permanently scarring the immune system, symptomatic primary EBV infection provides a unique cohort of patients through which to study the effects of impaired IL-15 signaling on human lymphocyte functions in vitro and in vivo.  (+info)

The IL-15/IL-15Ralpha on cell surfaces enables sustained IL-15 activity and contributes to the long survival of CD8 memory T cells. (2/75)

We previously described unique features of the IL-15 receptor (IL-15R)alpha. IL-15Ralpha by itself forms stable complexes with IL-15 on cell surfaces and presents IL-15 in trans to neighboring natural killer/T cells. Moreover, the membrane IL-15/IL-15Ralpha complexes (membIL-15) undergo endosomal internalization but survive lysosomal degradation, allowing the complexes to recycle back to the cell surface. Here, we show that membIL-15+ cells act as a persistent source of IL-15 for the surrounding microenvironment (intercellular reservoir effect). Additionally, membIL-15+ cells give rise to augmented retention of IL-15 in the circulation as well as in tissues. Curiously, IL-15 retention was particularly associated with lungs, rather than with lymph nodes, in normal unstimulated mice, which correlated with the preferential homing of antigen-specific CD8 T cells to lungs during their contraction phase in an IL-15Ralpha-dependent manner. Furthermore, membIL-15, unlike soluble IL-15, caused sustained IL-15 signal transduction in the target cells. Collectively, these characteristics define IL-15 as a unique cytokine with prolonged in vivo survival and sustained biological action on the target cells, which may account for the proposed persistent action of IL-15 that helps the long-term survival of functional CD8 memory T cells in vivo.  (+info)

Limiting {gamma}c expression differentially affects signaling via the interleukin (IL)-7 and IL-15 receptors. (3/75)

X-linked severe combined immunodeficiency (SCID-X1) results from mutations in the IL2RG gene, which encodes the common gamma chain (gammac) of the receptors for interleukin (IL)-2, 4, 7, 9, 15, and 21. Affected infants typically lack T and natural killer (NK) cells as a consequence of loss of signaling via the IL-7 receptor (IL-7R) and the IL-15R, respectively. In some infants, however, autologous NK cells are observed despite failure of T-cell ontogeny. The mechanisms by which mutations in gammac differentially impact T- and NK-cell ontogeny remain incompletely understood. We used SCID-X1 patient-derived EBV-transformed B cells to test the hypothesis that the IL-15R-mediated signaling is preferentially retained as gammac expression becomes limiting. Signal transduction via the IL-15R was readily detected in control EBV-transformed B cells, and via the IL-7R when modified to express IL-7Ralpha. Under the same experimental conditions, patient-derived EBV-transformed B cells expressing trace amounts of gammac proved incapable of signal transduction via the IL-7R while retaining the capacity for signal transduction via the IL-15R. An equivalent result was obtained in ED-7R cells modified to express varying levels of gammac. Collectively, these results confirm that signal transduction via the IL-15R, and hence NK ontogeny, is preferentially retained relative to the IL-7R as gammac expression becomes limiting.  (+info)

IL-15 and IL-15R alpha gene deletion: effects on T lymphocyte trafficking and the microglial and neuronal responses to facial nerve axotomy. (4/75)

IL-15 is a potent T cell chemoattractant, and this cytokine and its unique alpha subunits, IL-15R alpha, can modify immune cell expression of several T cell chemokines and their receptors. Facial nerve axotomy in mice leads to T cell migration across an intact blood-brain-barrier (BBB), and under certain conditions T cells can provide neuroprotection to injured neurons in the facial motor nucleus (FMN). Although chemokines and chemoattractant cytokines are thought to be responsible for T cell migration to the injured cell bodies, data addressing this question are lacking. This study tested the hypothesis that T cell homing to the axotomized FMN would be impaired in knockout (KO) mice with the IL-15 and IL-15R alpha genes deleted, and sought to determine if microglial responsiveness and motoneuron death are affected. Both IL-15KO and IL-15R alpha KO mice exhibited a marked reduction in CD3(+) T cells and had fewer MHC2(+) activated microglia in the injured FMN than their respective WT controls at day 14 post-axotomy. Although there was a relative absence of T cell recruitment into the axotomized FMN in both knockout strains, IL-15R alpha KO mice had five times more motoneuron death (characterized by perineuronal microglial clusters engulfing dead motoneurons) than their WT controls, whereas dead neurons in IL-15KO did not differ from their WT controls. Further studies are needed to dissect the mechanisms that underlie these observations (e.g., central vs. peripheral immune contributions).  (+info)

Membrane-bound interleukin (IL)-15 on renal tumor cells rescues natural killer cells from IL-2 starvation-induced apoptosis. (5/75)

Renal cell carcinoma primary tumors and lung metastases are infiltrated by activated natural killer (NK) cells. Interleukin (IL)-15, a major cytokine involved in cross-talk between accessory cells (dendritic cells and macrophages) and NK cells, is produced by epithelial renal cells. We show that renal cell carcinoma cells and normal renal cells express IL-15 mRNA and membrane-bound IL-15 (MbIL-15). These cells also express IL-15 receptor alpha (IL-15Ralpha). Silencing of IL-15Ralpha by specific small interfering RNA in renal cell carcinoma had no effect on MbIL-15 production, indicating that the cytokine is not cross-presented by IL-15Ralpha in renal cell carcinoma cells but anchored to the membrane. Furthermore, we show that MbIL-15 from renal cell carcinoma cells is functional and involved in rapid nuclear translocation of phosphorylated signal transducers and activators of transcription 3 in IL-2-starved NK cells. MbIL-15 on the target did not interfere with resting NK cell activation and target cell cytolysis but rescued NK cells from IL-2 starvation-induced apoptosis through contact-dependent interaction. Masking of MbIL-15 with soluble IL-15Ralpha molecules restored NK cell apoptosis. These findings suggest that IL-15 produced by renal tumor cells is involved in the maintenance of active NK cells at the tumor site.  (+info)

Human CD8+ T cell memory generation in Puumala hantavirus infection occurs after the acute phase and is associated with boosting of EBV-specific CD8+ memory T cells. (6/75)

The induction and maintenance of T cell memory is incompletely understood, especially in humans. We have studied the T cell response and the generation of memory during acute infection by the Puumala virus (PUUV), a hantavirus endemic to Europe. It causes a self-limiting infection with no viral persistence, manifesting as hemorrhagic fever with renal syndrome. HLA tetramer staining of PBMC showed that the CD8(+) T cell response peaked at the onset of the clinical disease and decreased within the next 3 wk. Expression of activation markers on the tetramer-positive T cells was also highest during the acute phase, suggesting that the peak population consisted largely of effector cells. Despite the presence of tetramer-positive T cells expressing cytoplasmic IFN-gamma, PUUV-specific cells producing IFN-gamma in vitro were rare during the acute phase. Their frequency, as well as the expression of IL-7R alpha mRNA and surface protein, increased during a follow-up period of 6 wk and probably reflected the induction of memory T cells. Simultaneously with the PUUV-specific response, we also noted in seven of nine patients an increase in EBV-specific T cells and the transient presence of EBV DNA in three patients, indicative of viral reactivation. Our results show that in a natural human infection CD8(+) memory T cells are rare during the peak response, gradually emerging during the first weeks of convalescence. They also suggest that the boosting of unrelated memory T cells may be a common occurrence in human viral infections, which may have significant implications for the homeostasis of the memory T cell compartment.  (+info)

NK cell survival mediated through the regulatory synapse with human DCs requires IL-15Ralpha. (7/75)

DCs activate NK cells during innate immune responses to viral infections. However, the composition and kinetics of the immunological synapse mediating this interaction are largely unknown. Here, we report the rapid formation of an immunological synapse between human resting NK cells and mature DCs. Although inhibitory NK cell receptors were polarized to this synapse, where they are known to protect mature DCs from NK cell lysis, the NK cell also received activation signals that induced mobilization of intracellular calcium and CD69 upregulation. The high-affinity component of the receptor for IL-15, IL-15Ralpha, accumulated at the synapse center on NK cells, and blocking of IL-15Ralpha increased NK cell apoptosis and diminished NK cell survival during their interaction with DCs. Furthermore, IL-15Ralpha-deficient NK cells, obtained from donors with a history of infectious mononucleosis, showed diminished survival in culture with DCs. Synapse formation was required for IL-15Ralpha-mediated NK cell survival, because synapse disruption by adhesion molecule blocking decreased DC-induced NK cell survival. These results identify what we believe to be a novel regulatory NK cell synapse with hallmarks of spatially separated inhibitory and activating interactions at its center. We suggest that this synapse formation enables optimal NK cell activation by DCs during innate immune responses.  (+info)

Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. (8/75)

We show that co-expression of interleukin 15 (IL-15) and IL-15 receptor alpha (IL-15Ralpha) in the same cell allows for the intracellular interaction of the two proteins early after translation, resulting in increased stability and secretion of both molecules as a complex. In the absence of co-expressed IL-15Ralpha, a large portion of the produced IL-15 is rapidly degraded immediately after synthesis. Co-injection into mice of IL-15 and IL-15Ralpha expression plasmids led to significantly increased levels of the cytokine in serum as well as increased biological activity of IL-15. Examination of natural killer cells and T lymphocytes in mouse organs showed a great expansion of both cell types in the lung, liver, and spleen. The presence of IL-15Ralpha also increased the number of CD44(high) memory cells with effector phenotype (CD44(high)CD62L-). Thus, mutual stabilization of IL-15 and IL-15Ralpha leads to remarkable increases in production, stability, and tissue availability of bioactive IL-15 in vivo. The in vivo data show that the most potent form of IL-15 is as part of a complex with its receptor alpha either on the surface of the producing cells or as a soluble extracellular complex. These results explain the reason for coordinate expression of IL-15 and IL-15Ralpha in the same cell and suggest that the IL-15Ralpha is part of the active IL-15 cytokine rather than part of the receptor.  (+info)