Amplification of the antibody response by C3b complexed to antigen through an ester link. (1/1592)

Complement C3 has been described as playing an important role in the cell-mediated immune response. C3b has the capacity to covalently bind Ag and then to stimulate in vitro Ag presentation to T lymphocytes. To verify this observation in vivo, we prepared and purified covalent human C3b-Ag complexes using lysozyme (HEL) as Ag. The characterization of these HEL-C3b complexes indicates that they are representative of those susceptible to be generated in physiological conditions. Mice were immunized with 0.1 to 0.6 microgram of either free HEL, HEL + C3b, HEL-C3b, or HEL + CFA. Response was assessed after two i.p. injections by quantification of specific Ab production. Immunization with either HEL-C3b complexes or HEL + CFA leads to anti-HEL IgG production whereas free HEL or HEL + C3b was ineffective. Either HEL-C3b or HEL + CFA immunizations led to a similar Ig subclass patterns, including IgG1, IgG2a, IgA, and IgM. Our experiments provide the first evidence for modulation of specific Ab response by C3b when it is bound to Ag through a physiological-like link. Taken together with previous data concerning Ab response following recombinant HEL-C3d immunization, cellular events such as processing of C3b-Ag by APC and recognition by T lymphocytes, this present result underlines the importance of C3b and its fragments in stimulation of the immune system, through the multiplicity and complementarity of its interactions.  (+info)

Immunity to Brucella in mice vaccinated with a fraction (F8) or a killed vaccine (H38) with or without adjuvant. Level and duration of immunity in relation to dose of vaccine, recall injection and age of mice. (2/1592)

Immunity to Brucella in the mouse, assessed by bacterial spleen counts 15 days after intraperitoneal inoculation of a standard challenge of B. abortus 544, has been studied with two vaccines, one experimental, composed of a fraction of the bacterial cell-wall (F8) extracted from B. abortus 99, the other of killed whole bacteria, B. melitensis 53 H38, taken as reference (H38). The level of primary immunity depended on the dose of vaccine, the presence of oil adjuvant and the age of the mouse. The presence of adjuvant enabled the immunization to F8 to continue beyond the first month, to reach its maximum around the fourth month, and to remain stable for at least 7 months. A booster injection 3 or 6 months after the primary vaccination reinforced existing immunity but did not increase it beyond a certain level. The effect of the recall injection was clearly demonstrated with low doses which gave a lower level of primary immunity.  (+info)

Pneumococcal conjugate vaccine primes for polysaccharide-inducible IgG2 antibody response in children with recurrent otitis media acuta. (3/1592)

Children with frequent recurrent episodes of otitis media may have a deficient IgG2 antibody response to polysaccharide antigens. Five otitis-prone children were vaccinated with heptavalent pneumococcal conjugate vaccine. While all had an IgG1 antibody response to all pneumococcal serotypes included in the conjugate vaccine, the IgG2 response, especially to serotypes 6B, 9V, 19F, and 23F, was poor. However, vaccination with a 23-valent polysaccharide vaccine 6 months after conjugate vaccination induced an 11.5- to 163-fold increase in IgG2 anti-polysaccharide antibody titers. Thus, an IgG2 polysaccharide antibody deficiency can be overcome by priming with a pneumococcal conjugate vaccine followed by a booster with a polyvalent polysaccharide vaccine.  (+info)

Activation of CD4 T cells by somatic transgenesis induces generalized immunity of uncommitted T cells and immunologic memory. (4/1592)

Cellular immune responses were analyzed in vivo after a single intraspleen inoculation of DNA coding for a 12-residue Th cell determinant associated with a 12-residue B cell epitope, a process termed somatic transgene immunization. We show that CD4 T cells are readily activated and produce IL-2, IFN-gamma and IL-4, characteristics of an uncommitted phenotype. Linked recognition of the two epitopes coded in the same transgene promoted IgM-IgG1 switch and enhanced the total Ab response but had no effect on IgG2a Abs. Although originating in the spleen, T cell responsiveness was found to spread immediately and with similar characteristics to all lymph nodes in the body. A single inoculation was also effective in establishing long term immunologic memory as determined by limiting dilution analysis, with memory T cells displaying a cytokine profile different from that of primary effector T cells. These studies provide evidence that by initiating immunity directly in secondary lymphoid organs, an immune response is generated with characteristics that differ from those using vaccines of conventional DNA or protein in adjuvant administered in peripheral sites. Somatic transgene immunization can therefore be used to probe T cell responsiveness in vivo and represents a tool to further understanding of the nature of the adaptive immune response.  (+info)

Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus. (5/1592)

The inactivated poliovirus vaccine (IPV) is used for protection against poliomyelitis in The Netherlands. It is not clear, however, whether IPV vaccination can lead to priming of the mucosal immune system and the induction of IgA. It has been demonstrated that IPV vaccination is able to induce strong memory IgA responses in the serum of persons who have been naturally exposed to wild-type poliovirus. This has led to the hypothesis that IPV vaccination is able to induce poliovirus-specific IgA at mucosal sites in persons who have been previously primed with live poliovirus at mucosal sites. To test this hypothesis, the kinetics of the IgA response in serum and saliva after IPV vaccination were examined in persons previously vaccinated with oral poliovirus vaccine (OPV) or IPV. ELISA and enzyme-linked immunospot assays were used for the detection of poliovirus-specific IgA responses. In addition, B cell populations were separated on the basis of the expression of mucosal (alpha4beta7 integrin) and peripheral homing receptors (L-selectin). Parenteral IPV vaccination was able to boost systemic and mucosal IgA responses in previously OPV-vaccinated persons only. None of the previously vaccinated IPV recipients responded with the production of IgA in saliva. In agreement with this finding, a large percentage of the poliovirus-specific IgA-producing lymphocytes detected in previous OPV recipients expressed the alpha4beta7 integrin. It is concluded that IPV vaccination alone is insufficient to induce a mucosal IgA response against poliovirus. In mucosally (OPV-) primed individuals, however, booster vaccination with IPV leads to a strong mucosal IgA response.  (+info)

Reimmunization after blood or marrow stem cell transplantation. (6/1592)

Protective immunity to diseases preventable by routine vaccination is lost over time following allogeneic and autologous blood and marrow transplantation. Adoptive transfer of immunity from donors to recipients after allogeneic transplantation is not sufficient to prevent this decline. Systematic reimmunization is necessary at appropriate time intervals following transplantation to re-establish immunity. Response to vaccination depends upon the type of transplant, the source of cells, the immune status of the patient, and the vaccine being used. While inactivated or subunit vaccines are safe in all transplant recipients, live vaccines are generally contraindicated. Reimmunization practices vary widely amongst transplant centers. This comprehensive review summarizes published data on post-transplant vaccination, and based upon these, suggests guidelines which may be used as a framework for development of reimmunization protocols.  (+info)

Immunoglobulin G (IgG) subclass distribution and IgG1 avidity of antibodies in human immunodeficiency virus-infected individuals after revaccination with tetanus toxoid. (7/1592)

In human immunodeficiency virus (HIV)-infected individuals the amount of antibodies formed after vaccination with T-cell-dependent recall antigens such as tetanus toxoid is proportional to the peripheral blood CD4(+) T-lymphocyte counts. To investigate whether the immunoglobulin G (IgG) subclass distribution and avidity of the antibodies produced after vaccination are affected as well, we gave 13 HIV-infected adults with low CD4(+) T-lymphocyte counts (<200 x 10(6)/liter; group I), 11 HIV-infected adults with intermediate CD4(+) T-lymphocyte counts (>/=200 x 10(6)/liter; group II), and 5 healthy controls booster immunizations with tetanus toxoid. The prevaccination antibody concentrations against tetanus toxoid were similar in the HIV-infected and healthy adults. After vaccination the total IgG and the IgG1 anti-tetanus toxoid antibody concentrations were significantly lower in group I than in group II and the controls. The avidity of the IgG1 anti-tetanus toxoid antibodies formed by HIV-infected adults was within the range for healthy controls, irrespective of their CD4(+) T-lymphocyte counts.  (+info)

Immunization with a peptide of Sm B/B' results in limited epitope spreading but not autoimmune disease. (8/1592)

An experimental model of systemic lupus erythematosus has recently been described in normal animals. We sought to confirm and extend this model, which involved immunization of normal rabbits and mice with a peptide of Sm B/B', PPPGMRPP. This peptide is an early target of the immune response in anti-Sm-positive patients with lupus. The peptide was used in a multiple Ag peptide format, with multiple copies of PPPGMRPP bound to an inert lysine backbone. New Zealand White rabbits and A/J and C57BL/10ScSn mouse strains were immunized with PPPGMRPP-MAP. Pepscan assays were used to determine the epitope spreading of the anti-PPPGMRPP-MAP response to other octamers of SmB/B' following immunization. We obtained high titer anti-PPPGMRPP-MAP IgG responses in the New Zealand White rabbits and A/J mice. The rabbits immunized with PPPGMRPP-MAP showed varying degrees of epitope spreading, while the A/J mice showed no spreading. We observed no autoantibodies to dsDNA or other anti-nuclear autoantibodies in our animals by ELISA or immunofluorescence, although anti-nuclear autoantibodies were found by Western blotting in some of the rabbits. No evidence of clinical disease was seen in our normal animals. These data underline the difficulties often associated with the reproduction of animal models in different laboratories.  (+info)