(1/77) Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes.

To assess mechanisms for postprandial hyperglycemia, we used a triple-isotope technique ([\3-(3)H]glucose and [(14)C]bicarbonate and oral [6,6-dideutero]glucose iv) and indirect calorimetry to compare components of glucose release and pathways for glucose disposal in 26 subjects with type 2 diabetes and 15 age-, weight-, and sex-matched normal volunteers after a standard meal. The results were as follows: 1) diabetic subjects had greater postprandial glucose release (P<0.001) because of both increased endogenous and meal-glucose release; 2) the greater endogenous glucose release (P<0.001) was due to increased gluconeogenesis (P<0.001) and glycogenolysis (P=0.01); 3) overall tissue glucose uptake, glycolysis, and storage were comparable in both groups (P>0.3); 4) glucose clearance (P<0.001) and oxidation (P=0.004) were reduced, whereas nonoxidative glycolysis was increased (P=0.04); and 5) net splanchnic glucose storage was reduced by approximately 45% (P=0.008) because of increased glycogen cycling (P=0.03). Thus in type 2 diabetes, postprandial hyperglycemia is primarily due to increased glucose release; hyperglycemia overcomes the effects of impaired insulin secretion and sensitivity on glucose transport, but intracellular defects persist so that pathways of glucose metabolism are abnormal and glucose is shunted away from normal sites of storage (e.g., liver and muscle) into other tissues.  (+info)

(2/77) Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration.

Five days of a high-fat diet while training, followed by 1 day of carbohydrate (CHO) restoration, increases rates of whole body fat oxidation and decreases CHO oxidation during aerobic cycling. The mechanisms responsible for these shifts in fuel oxidation are unknown but involve up- and downregulation of key regulatory enzymes in the pathways of skeletal muscle fat and CHO metabolism, respectively. This study measured muscle PDH and HSL activities before and after 20 min of cycling at 70% VO2peak and 1 min of sprinting at 150% peak power output (PPO). Estimations of muscle glycogenolysis were made during the initial minute of exercise at 70% VO2peak and during the 1-min sprint. Seven male cyclists undertook this exercise protocol on two occasions. For 5 days, subjects consumed in random order either a high-CHO (HCHO) diet (10.3 g x kg(-1) x day(-1) CHO, or approximately 70% of total energy intake) or an isoenergetic high-fat (FAT-adapt) diet (4.6 g x kg(-1) x day(-1) FAT, or 67% of total energy) while undertaking supervised aerobic endurance training. On day 6 for both treatments, subjects ingested an HCHO diet and rested before their experimental trials on day 7. This CHO restoration resulted in similar resting glycogen contents (FAT-adapt 873 +/- 121 vs. HCHO 868 +/- 120 micromol glucosyl units/g dry wt). However, the respiratory exchange ratio was lower during cycling at 70% VO2peak in the FAT-adapt trial, which resulted in an approximately 45% increase and an approximately 30% decrease in fat and CHO oxidation, respectively. PDH activity was lower at rest and throughout exercise at 70% VO2peak (1.69 +/- 0.25 vs. 2.39 +/- 0.19 mmol x kg wet wt(-1) x min(-1)) and the 1-min sprint in the FAT-adapt vs. the HCHO trial. Estimates of glycogenolysis during the 1st min of exercise at 70% VO2peak and the 1-min sprint were also lower after FAT-adapt (9.1 +/- 1.1 vs. 13.4 +/- 2.1 and 37.3 +/- 5.1 vs. 50.5 +/- 2.7 glucosyl units x kg dry wt(-1) x min(-1)). HSL activity was approximately 20% higher (P = 0.12) during exercise at 70% VO2peak after FAT-adapt. Results indicate that previously reported decreases in whole body CHO oxidation and increases in fat oxidation after the FAT-adapt protocol are a function of metabolic changes within skeletal muscle. The metabolic signals responsible for the shift in muscle substrate use during cycling at 70% VO2peak remain unclear, but lower accumulation of free ADP and AMP after the FAT-adapt trial may be responsible for the decreased glycogenolysis and PDH activation during sprinting.  (+info)

(3/77) Effects of insulin and cytosolic redox state on glucose production pathways in the isolated perfused mouse liver measured by integrated 2H and 13C NMR.

A great deal is known about hepatic glucose production and its response to a variety of factors such as redox state, substrate supply and hormonal control, but the effects of these parameters on the flux through biochemical pathways which integrate to control glucose production are less clear. A combination of 13C and [2H]water tracers and NMR isotopomer analysis were used to investigate metabolic fluxes in response to altered cytosolic redox state and insulin. In livers isolated from fed mice and perfused with a mixture of substrates including lactate/pyruvate (10:1, w/w), hepatic glucose production had substantial contributions from glycogen, PEP (phosphoenolpyruvate) and glycerol. Inversion of the lactate/pyruvate ratio (1:10, w/w) resulted in a surprising decrease in the contribution from glycogen and an increase in that from PEP to glucose production. A change in the lactate/pyruvate ratio from 10:1 to 1:10 also stimulated flux through the tricarboxylic acid cycle (2-fold), while leaving oxygen consumption and overall glucose output unchanged. When lactate and pyruvate were eliminated from the perfusion medium, both gluconeogenesis and tricarboxylic-acid-cycle flux were dramatically lower. Insulin lowered glucose production by inhibiting glycogenolysis at both low and high doses, but only at high levels of insulin did gluconeogenesis or tricarboxylic-acid-cycle flux tend towards lower values (P<0.1). Our data demonstrate that, in the isolated mouse liver, substrate availability and cellular redox state have a dramatic impact on liver metabolism in both the tricarboxylic acid cycle and gluconeogenesis. The tight correlation of these two pathways under multiple conditions suggest that interventions which increase or decrease hepatic tricarboxylic-acid-cycle flux will have a concomitant effect on gluconeogenesis and vice versa.  (+info)

(4/77) Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors.

Inosine, an endogenous nucleoside, has recently been shown to exert potent effects on the immune, neural, and cardiovascular systems. This work addresses modulation of intermediary metabolism by inosine through adenosine receptors (ARs) in isolated rat hepatocytes. We conducted an in silico search in the GenBank and complete genomic sequence databases for additional adenosine/inosine receptors and for a feasible physiological role of inosine in homeostasis. Inosine stimulated glycogenolysis (approximately 40%, EC50 4.2 x 10(-9) M), gluconeogenesis (approximately 40%, EC50 7.8 x 10(-9) M), and ureagenesis (approximately 130%, EC50 7.0 x 10(-8) M) compared with basal values; these effects were blunted by the selective A3 AR antagonist 9-chloro-2-(2-furanyl)-5-[(phenylacetyl)amino][1,2,4]-triazolo[1,5-c]quinazoline (MRS 1220) but not by selective A1, A2A, and A2B AR antagonists. In addition, MRS 1220 antagonized inosine-induced transient increase (40%) in cytosolic Ca2+ and enhanced (90%) glycogen phosphorylase activity. Inosine-induced Ca2+ mobilization was desensitized by adenosine; in a reciprocal manner, inosine desensitized adenosine action. Inosine decreased the cAMP pool in hepatocytes when A1, A2A, and A2B AR were blocked by a mixture of selective antagonists. Inosine-promoted metabolic changes were unrelated to cAMP decrease but were Ca2+ dependent because they were absent in hepatocytes incubated in EGTA- or BAPTA-AM-supplemented Ca2+-free medium. After in silico analysis, no additional cognate adenosine/inosine receptors were found in human, mouse, and rat. In both perfused rat liver and isolated hepatocytes, hypoxia/reoxygenation produced an increase in inosine, adenosine, and glucose release; these actions were quantitatively greater in perfused rat liver than in isolated cells. Moreover, all of these effects were impaired by the antagonist MRS 1220. On the basis of results obtained, known higher extracellular inosine levels under ischemic conditions, and inosine's higher sensitivity for stimulating hepatic gluconeogenesis, it is suggested that, after tissular ischemia, inosine contributes to the maintenance of homeostasis by releasing glucose from the liver through stimulation of A3 ARs.  (+info)

(5/77) Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise.

The aim of this study was to determine whether the decreased muscle and blood lactate during exercise with hyperoxia (60% inspired O2) vs. room air is due to decreased muscle glycogenolysis, leading to decreased pyruvate and lactate production and efflux. We measured pyruvate oxidation via PDH, muscle pyruvate and lactate accumulation, and lactate and pyruvate efflux to estimate total pyruvate and lactate production during exercise. We hypothesized that 60% O2 would decrease muscle glycogenolysis, resulting in decreased pyruvate and lactate contents, leading to decreased muscle pyruvate and lactate release with no change in PDH activity. Seven active male subjects cycled for 40 min at 70% VO2 peak on two occasions when breathing 21 or 60% O2. Arterial and femoral venous blood samples and blood flow measurements were obtained throughout exercise, and muscle biopsies were taken at rest and after 10, 20, and 40 min of exercise. Hyperoxia had no effect on leg O2 delivery, O2 uptake, or RQ during exercise. Muscle glycogenolysis was reduced by 16% with hyperoxia (267 +/- 19 vs. 317 +/- 21 mmol/kg dry wt), translating into a significant, 15% reduction in total pyruvate production over the 40-min exercise period. Decreased pyruvate production during hyperoxia had no effect on PDH activity (pyruvate oxidation) but significantly decreased lactate accumulation (60%: 22.6 +/- 6.4 vs. 21%: 31.3 +/- 8.7 mmol/kg dry wt), lactate efflux, and total lactate production over 40 min of cycling. Decreased glycogenolysis in hyperoxia was related to an approximately 44% lower epinephrine concentration and an attenuated accumulation of potent phosphorylase activators ADPf and AMPf during exercise. Greater phosphorylation potential during hyperoxia was related to a significantly diminished rate of PCr utilization. The tighter metabolic match between pyruvate production and oxidation resulted in a decrease in total lactate production and efflux over 40 min of exercise during hyperoxia.  (+info)

(6/77) Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.

Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle glycogenolysis and lactate accumulation during exercise and increase the capacity for pyruvate oxidation via pyruvate dehydrogenase (PDH). Eight men [peak oxygen uptake (VO2 peak)=3.8+/-0.2 l/min] performed six sessions of SIT (4-7x30-s "all-out" cycling with 4 min of recovery) over 2 wk. Before and after SIT, biopsies (vastus lateralis) were obtained at rest and after each stage of a two-stage cycling test that consisted of 10 min at approximately 60% followed by 10 min at approximately 90% of VO2 peak. Subjects also performed a 250-kJ time trial (TT) before and after SIT to assess changes in cycling performance. SIT increased muscle glycogen content by approximately 50% (main effect, P=0.04) and the maximal activity of citrate synthase (posttraining: 7.8+/-0.4 vs. pretraining: 7.0+/-0.4 mol.kg protein -1.h-1; P=0.04), but the maximal activity of 3-hydroxyacyl-CoA dehydrogenase was unchanged (posttraining: 5.1+/-0.7 vs. pretraining: 4.9+/-0.6 mol.kg protein -1.h-1; P=0.76). The active form of PDH was higher after training (main effect, P=0.04), and net muscle glycogenolysis (posttraining: 100+/-16 vs. pretraining: 139+/-11 mmol/kg dry wt; P=0.03) and lactate accumulation (posttraining: 55+/-2 vs. pretraining: 63+/-1 mmol/kg dry wt; P=0.03) during exercise were reduced. TT performance improved by 9.6% after training (posttraining: 15.5+/-0.5 vs. pretraining: 17.2+/-1.0 min; P=0.006), and a control group (n=8, VO2 peak=3.9+/-0.2 l/min) showed no change in performance when tested 2 wk apart without SIT (posttraining: 18.8+/-1.2 vs. pretraining: 18.9+/-1.2 min; P=0.74). We conclude that short-term SIT improved cycling TT performance and resulted in a closer matching of glycogenolytic flux and pyruvate oxidation during submaximal exercise.  (+info)

(7/77) The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism.

Obesity is associated with an increase in the fractional contribution of gluconeogenesis (GNG) to glucose production. We tested if this was related to the altered protein metabolism in obesity. GNG(PEP) (via phosphoenol pyruvate [PEP]) was measured after a 17-h fast using the deuterated water method and 2H nuclear magnetic resonance spectroscopy of plasma glucose. Whole-body 13C-leucine and 3H-glucose kinetics were measured in the postabsorptive state and during a hyperinsulinemic-euglycemic-isoaminoacidemic clamp in 19 (10 men and 9 women) lean and 16 (7 men and 9 women) obese nondiabetic subjects. Endogenous glucose production was not different between groups. Postabsorptive %GNG(PEP) and GNG(PEP) flux were higher in obese subjects, and glycogenolysis contributed less to glucose production than in lean subjects. GNG(PEP) flux correlated with all indexes of adiposity and with postabsorptive leucine rate of appearance (Ra) (protein catabolism). GNG(PEP) was negatively related to the clamp glucose rate of disposal (Rd) and to the protein anabolic response to hyperinsulinemia. In conclusion, the increased contribution of GNG to glucose production in obesity is linked to increased postabsorptive protein catabolism and insulin resistance of both glucose and protein metabolism. Due to increased protein turnover rates, greater supply of gluconeogenic amino acids to the liver may trigger their preferential use over glycogen for glucose production.  (+info)

(8/77) The effect of an acute elevation of NEFA concentrations on glucagon-stimulated hepatic glucose output.

To determine the effect of nonesterified fatty acids (NEFA) on glucagon action, glucagon was infused intraportally (1.65 ng.min(-1).kg(-1)) for 3 h into 18-h-fasted, pancreatic-clamped conscious dogs in the presence [NEFA + glucagon (GGN)] or absence (GGN) of peripheral Intralipid plus heparin infusion. Additionally, hyperglycemic (HG), hyperglycemic-hyperlipidemic (NEFA + HG), and glycerol plus glucagon (GLYC + GGN) controls were studied. Arterial plasma glucagon concentrations rose equally in GGN, NEFA + GGN, and GLYC + GGN but remained basal in hyperglycemic controls. Peripheral infusions of Intralipid and heparin increased arterial plasma NEFA concentrations equally in NEFA + GGN and NEFA + HG and did not change in other protocols. After 15 min, glucagon infusion resulted in a rapid, brief increase in net hepatic glycogenolysis (NHGLY, mg.min(-1).kg(-1)) of approximately 6.0 in GGN and GLYC + GGN but only increased by 3.8 +/- 1.3 in NEFA + GGN. Thus increases in NHGLY, and consequently net hepatic glucose output (NHGO), were blunted by 40%, with no difference between the groups in the last 2.5 h of the study. NHGO and NHGLY did not significantly change in HG and NEFA + HG. Net hepatic gluconeogenic flux did not change in GGN, GLYC + GGN, or HG. However, Intralipid and heparin infusion resulted in similar increases in net hepatic gluconeogenic flux in NEFA + GGN and NEFA + HG. Thus elevated NEFA limit the initial increase in glucagon-stimulated HGO by blunting glycogenolysis, without having any effect on the gluconeogenic or glycogenolytic contributions or NHGO thereafter.  (+info)