Localization and properties of a silencing element near the mat3-M mating-type cassette of Schizosaccharomyces pombe. (1/643)

Transcription is repressed in a segment of Schizosaccharomyces pombe chromosome II that encompasses the mat2-P and mat3-M mating-type cassettes. Chromosomal deletion analysis revealed the presence of a repressor element within 500 bp of mat3-M. This element acted in synergy with the trans-acting factors Swi6, Clr1, Clr2, Clr3, and Clr4 and had several properties characteristic of silencers: it did not display promoter specificity, being able to silence not only the M mating-type genes but also the S. pombe ura4 and ade6 genes placed on the centromere-distal side of the mat3-M cassette; it could repress a gene when placed further than 2.6 kb from the promoter and it acted in both orientations, although with different efficiencies, the natural orientation repressing more stringently than the reverse. Following deletion of this element, two semistable states of expression of the mat3-M region were observed and these two states could interconvert. The deletion did not affect gene expression in the vicinity of the mat2-P cassette, 11 kb away from mat3-M. Conversely, deleting 1.5 kb on the centromere-proximal side of the mat2-P cassette, which was previously shown to partially derepress transcription around mat2-P, had no effect on gene expression near mat3-M. A double deletion removing the mat2-P and mat3-M repressor elements had the same effect as the single deletions on their respective cassettes when assayed in cells of the M mating type. These observations allow us to refine a model proposing that redundant pathways silence the mating type region of S. pombe.  (+info)

A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. (2/643)

Transcriptional silencing in Saccharomyces cerevisiae occurs at several genetic loci, including the ribosomal DNA (rDNA). Silencing at telomeres (telomere position effect [TPE]) and the cryptic mating-type loci (HML and HMR) depends on the silent information regulator genes, SIR1, SIR2, SIR3, and SIR4. However, silencing of polymerase II-transcribed reporter genes integrated within the rDNA locus (rDNA silencing) requires only SIR2. The mechanism of rDNA silencing is therefore distinct from TPE and HM silencing. Few genes other than SIR2 have so far been linked to the rDNA silencing process. To identify additional non-Sir factors that affect rDNA silencing, we performed a genetic screen designed to isolate mutations which alter the expression of reporter genes integrated within the rDNA. We isolated two classes of mutants: those with a loss of rDNA silencing (lrs) phenotype and those with an increased rDNA silencing (irs) phenotype. Using transposon mutagenesis, lrs mutants were found in 11 different genes, and irs mutants were found in 22 different genes. Surprisingly, we did not isolate any genes involved in rRNA transcription. Instead, multiple genes associated with DNA replication and modulation of chromatin structure were isolated. We describe these two gene classes, and two previously uncharacterized genes, LRS4 and IRS4. Further characterization of the lrs and irs mutants revealed that many had alterations in rDNA chromatin structure. Several lrs mutants, including those in the cdc17 and rfc1 genes, caused lengthened telomeres, consistent with the hypothesis that telomere length modulates rDNA silencing. Mutations in the HDB (RPD3) histone deacetylase complex paradoxically increased rDNA silencing by a SIR2-dependent, SIR3-independent mechanism. Mutations in rpd3 also restored mating competence selectively to sir3Delta MATalpha strains, suggesting restoration of silencing at HMR in a sir3 mutant background.  (+info)

A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus. (3/643)

In the mushroom Coprinus cinereus, the multiallelic B mating type genes are predicted to encode a large family of seven-transmembrane domain receptors and CaaX-modified pheromones. We have shown that a single amino acid change Q229P in transmembrane domain VI of one receptor confers a self-compatible mating phenotype. Using a heterologous yeast assay, we have demonstrated that this C.cinereus pheromone receptor is a G-protein-coupled receptor and that the Q229P mutation is constitutively activating. A C.cinereus pheromone precursor was processed to an active species specifically in yeast MATa cells and activated the co-expressed wild-type receptor. Yeast cells expressing the wild-type receptor were used to test the activity of synthetic peptides, enabling us to predict the structure of the mature C.cinereus pheromone and to show that the Q229P mutation does not compromise normal receptor function.  (+info)

Position effect variegation at the mating-type locus of fission yeast: a cis-acting element inhibits covariegated expression of genes in the silent and expressed domains. (4/643)

Schizosaccharomyces pombe switches its mating type by transposing a copy of unexpressed genes from the respective mat2 or mat3 cassettes to mat1. The donor cassettes are located in a silent domain that is separated from the expressed mat1 cassette by the L region. We monitored the expression of ade6 from sites in the L region and examined the relationship between the expression state at these sites and at sites within the silent domain. Results indicate that: (1) the silent domain extends into the L region, but repression is gradually alleviated with increasing distance from mat2, and overexpression of swi6 enhances PEV in the L region; (2) a transcriptionally active chromatin state, associated with reporter gene expression in the L region, spreads toward the silent domain; (3) a cis-acting element, located at the junction between the L region and mat2-P, ensures repression in the silent domain, regardless of the expression state in the L region; and (4) repression in mat1-P cells is less stringently controlled than in mat1-M cells. We discuss the functional organization of the mat region and genetic elements that ensure separation between repressed and derepressed domains.  (+info)

The divergence-homogenization duality in the evolution of the b1 mating type gene of Coprinus cinereus. (5/643)

The A mating type locus of the fungus Coprinus cinereus is a complex, multigenic locus which regulates compatibility and subsequent sexual development. Genes within the A locus such as the b1 gene studied here exhibit extreme sequence variation. In this work, we asked how b1 alleles have evolved high levels of variation and, at the same time, conserved function. We compared sequence variation in 17 alleles characterized as belonging to seven different compatibility classes. Comparison of sequence variation between representatives of these seven classes shows that different regions of the b1 gene have been subject to varying levels of substitution, recombination, and structural/functional constraints. The N-terminal region of the encoded protein, which has been previously demonstrated to govern self/nonself recognition, exhibited hypervariability with levels of amino acid identity as low as 41%. We used a novel analysis of neutral mutations accumulating in this gene to rule out the possibility that the N-terminal region is hypermutable. In contrast, the C-terminal region displayed heterogeneous levels of variation, with functional motifs being better conserved. In fact, there is a duality in the b1 gene between variability and conservation; recombination events have homogenized the C-terminal region, while recombination events are undetectable in the N-terminal region. The ability to regulate sexual development is maintained in all of the mating compatibility alleles studied, and these data suggest that some functional motifs may tolerate high levels of substitution.  (+info)

Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. (6/643)

Eukaryotes have acquired many mechanisms to repair DNA double-strand breaks (DSBs) [1]. In the yeast Saccharomyces cerevisiae, this damage can be repaired either by homologous recombination, which depends on the Rad52 protein, or by non-homologous end-joining (NHEJ), which depends on the proteins yKu70 and yKu80 [2] [3]. How do cells choose which repair pathway to use? Deletions of the SIR2, SIR3 and SIR4 genes - which are involved in transcriptional silencing at telomeres and HM mating-type loci (HMLalpha and HMRa) in yeast [4] - have been reported to reduce NHEJ as severely as deletions of genes encoding Ku proteins [5]. Here, we report that the effect of deleting SIR genes is largely attributable to derepression of silent mating-type genes, although Sir proteins do play a minor role in end-joining. When DSBs were made on chromosomes in haploid cells that retain their mating type, sir Delta mutants reduced the frequency of NHEJ by twofold or threefold, although plasmid end-joining was not affected. In diploid cells, sir mutants showed a twofold reduction in the frequency of NHEJ in two assays. Mating type also regulated the efficiency of DSB-induced homologous recombination. In MATa/MATalpha diploid cells, a DSB induced by HO endonuclease was repaired 98% of the time by gene conversion with the homologous chromosome, whereas in diploid cells with an alpha mating type (matDelta/MATalpha) repair succeeded only 82% of the time. Mating-type regulation of genes specific to haploid or diploid cells plays a key role in determining which pathways are used to repair DSBs.  (+info)

Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. (7/643)

In the budding yeast, Saccharomyces cerevisiae, replicators can function outside the chromosome as autonomously replicating sequence (ARS) elements; however, within chromosome III, certain ARSs near the transcriptionally silent HML locus show no replication origin activity. Two of these ARSs comprise the transcriptional silencers E (ARS301) and I (ARS302). Another, ARS303, resides between HML and the CHA1 gene, and its function is not known. Here we further localized and characterized ARS303 and in the process discovered a new ARS, ARS320. Both ARS303 and ARS320 are competent as chromosomal replication origins since origin activity was seen when they were inserted at a different position in chromosome III. However, at their native locations, where the two ARSs are in a cluster with ARS302, the I silencer, no replication origin activity was detected regardless of yeast mating type, special growth conditions that induce the transcriptionally repressed CHA1 gene, trans-acting mutations that abrogate transcriptional silencing at HML (sir3, orc5), or cis-acting mutations that delete the E and I silencers containing ARS elements. These results suggest that, for the HML ARS cluster (ARS303, ARS320, and ARS302), inactivity of origins is independent of local transcriptional silencing, even though origins and silencers share key cis- and trans-acting components. Surprisingly, deletion of active replication origins located 25 kb (ORI305) and 59 kb (ORI306) away led to detection of replication origin function at the HML ARS cluster, as well as at ARS301, the E silencer. Thus, replication origin silencing at HML ARSs is mediated by active replication origins residing at long distances from HML in the chromosome. The distal active origins are known to fire early in S phase, and we propose that their inactivation delays replication fork arrival at HML, providing additional time for HML ARSs to fire as origins.  (+info)

Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. (8/643)

Candida albicans, the most prevalent fungal pathogen in humans, is thought to lack a sexual cycle. A set of C. albicans genes has been identified that corresponds to the master sexual cycle regulators a1, alpha1, and alpha2 of the Saccharomyces cerevisiae mating-type (MAT) locus. The C. albicans genes are arranged in a way that suggests that these genes are part of a mating type-like locus that is similar to the mating-type loci of other fungi. In addition to the transcriptional regulators a1, alpha1, and alpha2, the C. albicans mating type-like locus contains several genes not seen in other fungal MAT loci, including those encoding proteins similar to poly(A) polymerases, oxysterol binding proteins, and phosphatidylinositol kinases.  (+info)