Use of recombinant viruses to deliver cytokines influencing the course of experimental bacterial infection. (1/116)

The feasibility of using viral constructs expressing cytokine genes to influence the course of bacterial infection was tested in mice. The mice were first infected with vaccinia or fowlpox viruses expressing the cytokine of interest, then challenged with the facultative intracellular bacterial pathogen Listeria monocytogenes. The course of infection was assessed by subsequent bacterial counts. Expression of IFN-gamma or TNF was protective. Vaccinia virus was more efficient at delivering IFN-gamma-mediated protection than was fowlpox virus, which is unable to proliferate in mammalian cells. The effect of vaccinia-IFN-gamma was more apparent in the liver, where vaccinia proliferates to high titres (> 109), than in the spleen, where only 103 vaccinia were isolated. Vaccinia virus expressing IL-4 exacerbated infection. Interleukin-4 exacerbation was T cell independent and was reflected in the failure of macrophage activation, possibly due to suppression of NK cells, which are a source of IFN-gamma early in infection. The clear indication of protection by some cytokines in this prophylactic model appears to justify further study of the therapeutic effects of cytokine-expressing viruses in chronic bacterial infections, especially where a cytokine defect is suspected.  (+info)

Efficient rescue of infectious bursal disease virus from cloned cDNA: evidence for involvement of the 3'-terminal sequence in genome replication. (2/116)

To study the mechanism of replication of infectious bursal disease virus (IBDV), and to determine factors on the IBDV RNA which are involved in viral replication, we used cloned full-length cDNA of both the A- and B-segments to generate infectious IBDV. Infectious IBDV was rescued from plasmids that contained full-length IBDV cDNA behind a T7 promoter, by transfecting these plasmids into cells which were infected with a recombinant Fowlpox virus that expressed T7 RNA polymerase. By using the cDNA transfection system we evaluated the effect of the length of the 3' terminus of the A-segment plus strand of IBDV. Although wild-type IBDV predominantly contains four cytosines at the 3' terminus, no difference in virus yield was found when virus was rescued from cDNAs containing three to six adjacent cytosines. When the 3' terminus was shorter than three cytosines the efficiency to generate infectious IBDV from cDNA was reduced, but IBDV could still be recovered reproducibly. The rescued viruses from cDNAs containing 3'-terminal deletions appeared to have a restored 3'-terminal sequence. The missing nucleotides are probably restored by using complementary bases of a stem-loop structure as template.  (+info)

Morphogenesis and release of fowlpox virus. (3/116)

Release of fowlpox virus (FWPV) as extracellular enveloped virus (EEV) appears to proceed both by the budding of intracellular mature virus (IMV) through the plasma membrane and by the fusion of intracellular enveloped virus (IEV) with the plasma membrane. Based on the frequency of budding events compared to wrapping events observed by electron microscopy, FWPV FP9 strain seems to exit chick embryo fibroblast cells predominantly by budding. In contrast to vaccinia virus (VV), the production of FWPV extracellular virus particles is not affected by N(1)-isonicotinoyl-N(2)-3-methyl-4-chlorobenzoylhydrazine (IMCBH). Comparison of the sequence of the VV F13L gene product with its FWPV orthologue showed a mutation, in the fowlpox protein, at the residue involved in IMCBH resistance in a mutant VV. Glucosamine, monensin or brefeldin A did not have any specific effect on FWPV extracellular virus production. Cytochalasin D, which inhibits the formation of actin filaments, reduces the production of extracellular virus particles by inhibiting the release of cell-associated enveloped virus (CEV) particles from the plasma membrane. Involvement of actin filaments in this mechanism is further supported by the co-localization of actin with viral particles close to the plasma membrane in the absence of cytochalasin D. Actin is also co-localized with virus factories.  (+info)

The genome of fowlpox virus. (4/116)

Here we present the genomic sequence, with analysis, of a pathogenic fowlpox virus (FPV). The 288-kbp FPV genome consists of a central coding region bounded by identical 9.5-kbp inverted terminal repeats and contains 260 open reading frames, of which 101 exhibit similarity to genes of known function. Comparison of the FPV genome with those of other chordopoxviruses (ChPVs) revealed 65 conserved gene homologues, encoding proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication and repair, protein processing, and virion structure. Comparison of the FPV genome with those of other ChPVs revealed extensive genome colinearity which is interrupted in FPV by a translocation and a major inversion, the presence of multiple and in some cases large gene families, and novel cellular homologues. Large numbers of cellular homologues together with 10 multigene families largely account for the marked size difference between the FPV genome (260 to 309 kbp) and other known ChPV genomes (178 to 191 kbp). Predicted proteins with putative functions involving immune evasion included eight natural killer cell receptors, four CC chemokines, three G-protein-coupled receptors, two beta nerve growth factors, transforming growth factor beta, interleukin-18-binding protein, semaphorin, and five serine proteinase inhibitors (serpins). Other potential FPV host range proteins included homologues of those involved in apoptosis (e.g., Bcl-2 protein), cell growth (e.g., epidermal growth factor domain protein), tissue tropism (e.g., ankyrin repeat-containing gene family, N1R/p28 gene family, and a T10 homologue), and avian host range (e.g., a protein present in both fowl adenovirus and Marek's disease virus). The presence of homologues of genes encoding proteins involved in steroid biogenesis (e.g., hydroxysteroid dehydrogenase), antioxidant functions (e.g., glutathione peroxidase), vesicle trafficking (e.g., two alpha-type soluble NSF attachment proteins), and other, unknown conserved cellular processes (e.g., Hal3 domain protein and GSN1/SUR4) suggests that significant modification of host cell function occurs upon viral infection. The presence of a cyclobutane pyrimidine dimer photolyase homologue in FPV suggests the presence of a photoreactivation DNA repair pathway. This diverse complement of genes with likely host range functions in FPV suggests significant viral adaptation to the avian host.  (+info)

Dual-viral vector approach induced strong and long-lasting protective immunity against very virulent infectious bursal disease virus. (5/116)

To induce strong protective immunity against very virulent infectious bursal disease virus (vvIBDV) in chickens, two viral vector systems, Marek's disease and Fowlpox viruses expressing the vvIBDV host-protective antigen VP2 (rMDV, rFPV), were used. Most of chickens vaccinated with the rFPV or rMDV alone, or vaccinated simultaneously with both at their hatch (rMDV-rFPV(1d)), were protected against developing clinical signs and mortality; however, only zero to 14% of the chickens were protected against gross lesions. In contrast, gross lesions were protected in 67% of chickens vaccinated primarily with the rMDV followed by boosting with the rFPV 2 weeks later (rMDV-rFPV(14d)). Protection against the severe histopathological lesions of rFPV, rMDV, rMDV-rFPV(1d), and rMDV-rFPV(14d) vaccine groups were 33, 42, 53, and 73%, respectively. Geometric mean antibody titers to VP2 of chickens vaccinated with the rFPV, rMDV, rMDV-rFPV(1d), and rMDV-rFPV(14d) before the challenge were 110, 202, 254, and 611, respectively. Persistent infection of the rMDV in chickens after the booster vaccination with rFPV was suggested by detection of the rMDV genes from peripheral blood lymphocyte DNA at 28 weeks of age. These results indicate that the dual-viral vector approach is useful for quickly and safely inducing strong and long-lasting protective immunity against vvIBDV in chickens.  (+info)

Identification and expression of a Mycoplasma gallisepticum surface antigen recognized by a monoclonal antibody capable of inhibiting both growth and metabolism. (6/116)

In order to identify antigenic proteins of Mycoplasma gallisepticum, monoclonal antibodies (MAbs) against virulent M. gallisepticum R strain were produced in mice. MAb 35A6 was selected for its abilities to inhibit both growth and metabolism of M. gallisepticum in vitro. The MAb recognized a membrane protein with an apparent molecular mass of 120 kDa. The corresponding gene, designated the mgc3 gene, was cloned from an M. gallisepticum genomic DNA expression library and sequenced. The mgc3 gene is a homologue of the ORF6 gene encoding 130-kDa protein in the P1 operon of M. pneumoniae and is localized downstream of the mgc1 gene, a homologue of the P1 gene. To assess the characteristics of MGC3 protein, all 10 TGA codons in the mgc3 gene, which encode a tryptophan in the Mycoplasma species, were replaced with TGG codons, and recombinant fowlpox viruses (FPV) harboring the altered mgc3 gene were constructed. One of the recombinant FPVs was improved to express MGC3 protein on the cell surface in which the signal peptide of MGC3 protein was replaced with one from Marek's disease virus gB. These results should provide the impetus to develop a vaccine based on MGC3 protein which can induce antibodies with both growth inhibition and metabolic-inhibition activities using a recombinant FPV.  (+info)

Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T lymphocyte activity. (7/116)

The identification of dendritic cells (DC) as the major antigen-presenting cell type of the immune system, combined with the development of procedures for their ex vivo culture, has opened possibilities for tumour immunotherapy based on the transfer of recombinant tumour antigens to DC. It is anticipated that the most effective type of response would be the stimulation of specific, MHC class I restricted cytotoxic T lymphocytes capable of recognising and destroying tumour cells. In order to make this approach possible, methods must be developed for the transfer of recombinant antigen to the DC in such a way that they will initiate an MHC class I restricted response. Here, we demonstrate that murine DC infected with a recombinant fowlpox virus (rFWPV) vector stimulate a powerful, MHC class I restricted response against a recombinant antigen. A rFWPV containing the OVA gene was constructed and used to infect the DC line DC2.4. The infected DC2.4 cells were found to stimulate the T-T cell hybridoma line RF33. 70, which responds specifically to the MHC class I restricted OVA peptide SIINFEKL. The stimulatory ability of the rFWPV-infected DC2.4 cells lasted for at least 72 h after infection and was eventually limited by proliferation of uninfected cells. By comparison, DC2.4 cells pulsed with synthetic SIINFEKL peptide stimulated RF33.70 well initially, but the stimulatory ability had declined to zero by 24 h after pulsing. FWPV infection of DC2.4 up-regulated MHC and costimulatory molecule expression. rFWPV was also found to infect both immature and mature human DC derived from cord blood CD34+ progenitors and express transgenes for up to 20 days after infection. We conclude that rFWPV shows promise as a vector for antigen gene transfer to DC in tumour immunotherapy protocols.  (+info)

Utilizing fowlpox virus recombinants to generate defective RNAs of the coronavirus infectious bronchitis virus. (8/116)

Coronavirus defective RNAs (D-RNAs) have been used as RNA vectors for the expression of heterologous genes and as vehicles for reverse genetics by modifying coronavirus genomes by targetted recombination. D-RNAs based on the avian coronavirus infectious bronchitis virus (IBV) D-RNA CD-61 have been rescued (replicated and packaged into virions) in a helper virus-dependent manner following electroporation of in vitro-generated T7 transcripts into IBV-infected cells. In order to increase the efficiency of rescue of IBV D-RNAs, cDNAs based on CD-61, under the control of a T7 promoter, were integrated into the fowlpox virus (FPV) genome. The 3'-UTR of the D-RNAs was flanked by a hepatitis delta antigenomic ribozyme and T7 terminator sequence to generate suitable 3' ends for rescue by helper IBV. Cells were co-infected simultaneously with IBV, the recombinant FPV (rFPV) containing the D-RNA sequence and a second rFPV expressing T7 RNA polymerase for the initial expression of the D-RNA transcript, subsequently rescued by helper IBV. Rescue of rFPV-derived CD-61 occurred earlier and with higher efficiency than demonstrated previously for electroporation of in vitro T7-generated RNA transcripts in avian cells. Rescue of CD-61 was also demonstrated for the first time in mammalian cells. The rescue of rFPV-derived CD-61 by M41 helper IBV resulted in leader switching, in which the Beaudette-type leader sequence on CD-61 was replaced with the M41 leader sequence, confirming that helper IBV virus replicated the rFPV-derived D-RNA. An rFPV-derived D-RNA containing the luciferase gene under the control of an IBV transcription-associated sequence was also rescued and expressed luciferase on serial passage.  (+info)