Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate. (1/692)

We examined the properties of the foveal, parafoveal, and near peripheral cone lattice in human neonates. To estimate the ability of these lattices to transmit the information used in contrast sensitivity and visual acuity tasks, we constructed ideal-observer models with the optics and photoreceptors of the neonatal eye at retinal eccentricities of 0, 5, and 10 degrees. For ideal-observer models limited by photon noise, the eye's optics, and cone properties, contrast sensitivity was higher in the parafovea and near periphery than in the fovea. However, receptor pooling probably occurs in the neonate's parafovea and near periphery as it does in mature eyes. When we add a receptor-pooling stage to the models of the parafovea and near periphery, ideal acuity is similar in the fovea, parafovea, and near periphery. Comparisons of ideal and real sensitivity indicate that optical and receptoral immaturities impose a significant constraint on neonatal contrast sensitivity and acuity, but that immaturities in later processing stages must also limit visual performance.  (+info)

Radiotherapy for isolated occult subfoveal neovascularisation in age related macular degeneration: a pilot study. (2/692)

BACKGROUND/AIMS: Teletherapy has been proposed as a possible treatment for choroidal neovascular membranes (CNV), secondary to age related macular degeneration (AMD) not amenable to laser photocoagulation. The aim of this prospective study has been to investigate the effect of teletherapy on isolated occult choroidal neovascular membranes of subfoveal location. METHODS: 28 AMD patients presenting with retrofoveal isolated occult CNV demonstrated by fluorescein angiography were treated by external beam radiation. A complete ophthalmological examination, fluorescein angiography, and indocyanine green angiography (ICG) were performed within 15 days before treatment and repeated at follow up. A total dose of 16 Gy was applied in four sessions of 4 Gy using a 4 MeV photon beam. Follow up ranged from 6 to 9 months (mean follow up 6.4 months). RESULTS: Visual acuity was found to be stable in 68% of the cases. The decrease in visual acuity was of 3-6 lines in 18% and of more than 6 lines in 10% of the eyes at last examination. On fluorescein angiography the size of the lesion area was found to be stable in 67%, decreased in 13%, and increased in 20% of the cases. On ICG angiography the size of the CNV was stable in 93% and increased in 7% of the cases. All the eyes experiencing a visual acuity decrease showed either no change or an increase in size of the membrane on fluorescein angiography and/or on ICG. CONCLUSION: According to this study with strict inclusion criteria, external beam radiotherapy seems to have a beneficial effect on the evolution of isolated occult subfoveal CNV.  (+info)

Contour integration in the peripheral field. (3/692)

Contour integration was measured in the normal peripheral field to determine if an explanation based solely on the known peripheral positional uncertainty was sufficient to explain performance. The task involved the detection of paths composed of micropatterns with correlated carrier orientations embedded in a field of similar micropatterns of random position and orientation (Field, D. J., Hayes A., & Hess, R. F. (1993). Vision Research, 33, 173-193). The intrinsic positional uncertainty for each eccentric locus was measured with the same stimulus and it did not account for levels of peripheral performance. We show that peripheral performance on this task does not get worse with eccentricity beyond about 10 degrees and that these results can be modeled by simple filtering without any subsequent cellular linking interactions.  (+info)

The effects of temporal noise and retinal illuminance on foveal flicker sensitivity. (4/692)

We measured foveal flicker sensitivity with and without external added temporal noise at various levels of retinal illuminance and described the data with our model of flicker sensitivity comprising: (i) low-pass filtering of the flickering signal plus external temporal and/or quantal noise by the modulation transfer function (MTF) of the retina (R): (ii) high-pass filtering in proportion to temporal frequency by the MTF of the postreceptoral neural pathways (P): (iii) addition of internal white neural noise; and (iv) detection by a temporal matched filter. Without temporal noise flicker sensitivity had a band-pass frequency-dependence at high and medium illuminances but changed towards a low-pass shape above 0.5 Hz at low luminances, in agreement with earlier studies. In strong external temporal noise, however, the flicker sensitivity function had a low-pass shape even at high and medium illuminances and flicker sensitivity was consistently lower with noise than without. At low luminances flicker sensitivity was similar with and without noise. An excellent fit of the model was obtained under the assumption that the only luminance-dependent changes were increases in the cut-off frequency (fc) and maximum contrast transfer of R with increasing luminance. The results imply the following: (i) performance is consistent with detection by a temporal matched filter, but not with a thresholding process based on signal amplitude; (ii) quantal fluctuations do not at any luminance level become a source of dominant noise present at the detector; (iii) the changes in the maximum contrast transfer reflect changes in retinal gain, which at low to moderate luminances implement less-than-Weber adaptation, with a 'square-root' law at the lowest levels; (iv) the changes of fc as function of mean luminance closely parallels time scale changes in cones, but the absolute values of fc are lower than expected from the kinetics of monkey cones at all luminances; (v) the constancy of the high-pass filtering function P indicates that surround antagonism does not weaken significantly with decreasing light level.  (+info)

Eye movements of rhesus monkeys directed towards imaginary targets. (5/692)

Is the presence of foveal stimulation a necessary prerequisite for rhesus monkeys to perform visually guided eye movements? To answer this question, we trained two rhesus monkeys to direct their eyes towards imaginary targets defined by extrafoveal cues. Independent of the type of target, real or imaginary, the trajectory of target movement determined the type of eye movement produced: steps in target position resulted in saccades and ramps in target position resulted in smooth pursuit eye movements. There was a tendency for the latency of saccades as well as pursuit onset latency to be delayed in the case of an imaginary target in comparison to the real target. The initial eye acceleration during smooth pursuit initiation elicited by an imaginary target decreased in comparison to the acceleration elicited by a real target. The steady-state pursuit gain was quite similar during pursuit of an imaginary or a real target. Our results strengthen the notion that pursuit is not exclusively a foveal function.  (+info)

Peripheral vision and oculomotor control during visual search. (6/692)

The present study concerns the dynamics of multiple fixation search. We tried to gain insight into: (1) how the peripheral and foveal stimulus affect fixation duration; and (2) how fixation duration affects the peripheral target selection for saccades. We replicated the non-corroborating results of Luria and Strauss (1975) ('Eye movements during search for coded and uncoded targets', Perception and Psychophysics 17, 303-308) (saccades were selective), and Zelinsky (1996) (Using eye movements to assess the selectivity of search movements. Vision research 36(14), 2177-2187) (saccades were not selective), by manipulating the critical features for peripheral selection and discrimination separately. We found search to be more selective and efficient when the selection task was easy or when fixations were long-lasting. Remarkably, subjects did not increase their fixation durations when the peripheral selection task was more difficult. Only the discrimination task affected the fixation duration. This implies that the time available for peripheral target selection is determined mainly by the discrimination task. The results of the present experiment suggest that, besides the difficulty of the peripheral selection task, fixation duration is an important factor determining the selection of potential targets for eye movements.  (+info)

Contrast dependency of foveal spatial functions: orientation, vernier, separation, blur and displacement discrimination and the tilt and Poggendorff illusions. (7/692)

To examine the effect of reducing luminance contrast in human foveal vision, discrimination thresholds were measured in four tasks and also a numerical measure of two visual illusions were obtained by a nulling technique. The patterns used for all tasks were made very similar to facilitate comparison between them--all featured luminance step edges whose contrast could be varied from near unity down to the detection threshold. Orientation, vernier and blur discrimination thresholds rise on average 5-6-fold when the contrast is reduced from near unity to a Michelson value of 0.03. Jump displacement thresholds are somewhat more robust to contrast reduction, and the curve of separation discrimination versus contrast is much shallower, rising by a factor of about 2. The magnitude of the Poggendorff and tilt illusions changes very little until the inducing contours are barely detectable.  (+info)

Temporal resolution deficits in the visual fields of MS patients. (8/692)

We assessed the relationship between temporal resolution and MS-induced neuropathy. A diagnostic strategy comprising assessments of temporal resolution at 16 points in the extra-foveal visual field up to 12 degrees from the fovea was first compared with foveal temporal resolution and with a standard VEP procedure in the same MS patients. At the group level, foveal temporal resolution was less sensitive to demyelination than the 16-point diagnostic strategy, the detection rate of which was comparable to that of the VEP procedure. Cross-sensitivity of the VEP and the 16-point diagnostic procedure was low. Subsequently, the average severity of MS-induced temporal resolution deficits was studied at three retinal loci of the same size but different eccentricities. Foveal deficits were not significantly greater than more peripheral deficits within the central 12 degrees.  (+info)