Uterine peristalsis during the follicular phase of the menstrual cycle: effects of oestrogen, antioestrogen and oxytocin. (1/787)

Uterine peristalsis, directing sustained and rapid sperm transport from the external cervical os or the cervical crypts to the isthmic part of the tube ipsilateral to the dominant follicle, changes in direction and frequency during the menstrual cycle, with lowest activity during menstruation and highest activity at mid cycle. It was therefore suggested that uterine peristalsis is under the control of the dominant follicle with the additional involvement of oxytocin. To test this hypothesis, vaginal sonography of uterine peristalsis was performed in the early, mid and late proliferative phases, respectively, of cycles of women treated with oestradiol valerate and with human menopausal gonadotrophin following pituitary downregulation, with clomiphene citrate and with intravenous oxytocin, respectively. Administration of oestradiol valerate resulted in oestradiol serum concentrations comparable with the normal cycle with a simulation of the normal frequency of peristaltic contractions. Elevated oestradiol concentrations and bolus injections of oxytocin resulted in a significant increase in the frequency of peristaltic contractions in the early and mid follicular phases, respectively. Chlomiphene tended, though insignificantly so, to suppress the frequency of peristaltic waves in the presence of elevated oestradiol concentrations. In the late follicular phase of the cycle extremely elevated oestradiol concentrations as well as the injection of oxytocin resulted only in an insignificant further increase of peristaltic frequency. In the normal cycles, as well as during extremely elevated oestradiol concentrations and following oxytocin administration, the peristaltic contractions were always confined to the subendometrial layer of the muscular wall. The results and the review of literature indicate that uterine peristalsis during the follicular phase of the menstrual cycle is controlled by oestradiol released from the dominant follicle with the probable involvement of oxytocin, which is presumably stimulated together with its receptor within the endometrial-subendometrial unit and therefore acting in an autocrine/paracrine fashion. Since unphysiological stimulation with oestradiol and oxytocin did not significantly increase the frequency of uterine peristalsis in the late follicular phase of the cycle it is assumed that normal preovulatory frequency of uterine peristalsis is at a level which cannot be significantly surpassed due to phenomena of refractoriness of the system.  (+info)

Incompetence of preovulatory mouse oocytes to undergo cortical granule exocytosis following induced calcium oscillations. (2/787)

Immature oocytes of many species are incompetent to undergo cortical granule (CG) exocytosis upon fertilization. In mouse eggs, CG exocytosis is dependent primarily on an inositol 1,4,5-trisphosphate (IP3)-mediated elevation of intracellular calcium ([Ca2+]i). While deficiencies upstream of [Ca2+]i release are known, this study examined whether downstream deficiencies also contribute to the incompetence of preovulatory mouse oocytes to release CGs. The experimental strategy was to bypass upstream deficiencies by inducing normal, fertilization-like [Ca2+]i oscillations in fully grown, germinal vesicle (GV) stage oocytes and determine if the extent of CG exocytosis was restored to levels observed in mature, metaphase II (MII)-stage eggs. Because IP3 does not stimulate a normal Ca2+ response in GV-stage oocytes, three alternate methods were used to induce oscillations: thimerosal treatment, electroporation, and sperm factor injection. Long-lasting oscillations from thimerosal treatment resulted in 64 and 10% mean CG release at the MII and GV stages, respectively (P < 0.001). Three electrical pulses induced mean [Ca2+]i elevations of approximately 730 and 650 nM in MII- and GV-stage oocytes, respectively, and 31% CG release in MII-stage eggs and 9% in GV-stage oocytes (P < 0.001). Sperm factor microinjection resulted in 86% CG release in MII-stage eggs, while similarly treated GV-stage oocytes exhibited < 1% CG release (P < 0.001). Taken together, these results demonstrate a deficiency downstream of [Ca2+]i release which is developmentally regulated in the 12 h prior to ovulation.  (+info)

Physiological variability of fluid-regulation hormones in young women. (3/787)

We tested the physiological reliability of plasma renin activity (PRA) and plasma concentrations of arginine vasopressin (P[AVP]), aldosterone (P[ALD]), and atrial natriuretic peptide (P[ANP]) in the early follicular phase and midluteal phases over the course of two menstrual cycles (n = 9 women, ages 25 +/- 1 yr). The reliability (Cronbach's alpha >/=0.80) of these hormones within a given phase of the cycle was tested 1) at rest, 2) after 2.5 h of dehydrating exercise, and 3) during a rehydration period. The mean hormone concentrations were similar within both the early follicular and midluteal phase tests; and the mean concentrations of P[ALD] and PRA for the three test conditions were significantly greater during the midluteal compared with the early follicular phase. Although Cronbach's alpha for resting and recovery P[ANP] were high (0.80 and 0.87, respectively), the resting and rehydration values for P[AVP], P[ALD], and PRA were variable between trials for the follicular (alpha from 0.49 to 0.55) and the luteal phase (alpha from 0.25 to 0. 66). Physiological reliability was better after dehydration for P[AVP] and PRA but remained low for P[ALD]. Although resting and recovery P[AVP], P[ALD], and PRA were not consistent within a given menstrual phase, the differences in the concentrations of these hormones between the different menstrual phases far exceeded the variability within the phases, indicating that the low within-phase reliability does not prevent the detection of menstrual phase-related differences in these hormonal variables.  (+info)

Luteinization and proteolysis in ovarian follicles of Meishan and Large White gilts during the preovulatory period. (4/787)

This experiment was conducted to determine why follicles luteinize faster in the Meishan breed than in the Large White breed of pig. Follicles were recovered during the late follicular phase from ovaries of both breeds before and after administration of hCG given to mimic the LH surge. First, the patterns of cholesterol transporters (high and low density lipoproteins: HDL and LDL) were compared. Cholesterol transporters detected in follicular fluid consisted of HDL only. Similar amounts of Apolipoprotein A-I were found in all samples. There was no obvious breed effect on minor lipoproteins found in the HDL-rich fraction, and this pattern was altered similarly by hCG in the two breeds. The LDL-rich samples of serum from both breeds contained similar amounts of protein. Second, three steroidogenic enzymes, adrenodoxin, 17 alpha-hydroxylase-lyase (P450(17) alpha) and 3 beta-hydroxysteroid-dehydrogenase (3 beta-HSD) were detected by immunohistochemistry and quantified by image analysis on sections of the two largest follicles. Before hCG treatment, theca interna cells demonstrated immunoreactivities for adrenodoxin (strong), P450(17) alpha and 3 beta-HSD (very strong), whereas granulosa cells displayed immunoreactivities for adrenodoxin only. After hCG treatment, the localization of the enzymes was unchanged but the staining intensity of adrenodoxin on granulosa cells and 3 beta-HSD on theca cells increased (P < 0.01 and P < 0.05, respectively). Breed effects were detected for the amounts of adrenodoxin in theca cells (Meishan > Large White; P < 0.05) and of 17 alpha-hydroxylase (Large White > Meishan, P < 0.01). Breed x treatment interactions were never detected. Finally, gelatinases, plasminogen activator, plasminogen activator inhibitor, tissue inhibitors of metalloproteases (TIMP-1 and TIMP-2) were visualized by direct or reverse zymography or western blotting. Whatever the stage relative to LH administration, follicular fluid from Large White gilts contained more TIMP-1, and TIMP-2 (P < 0.02 and P < 0.01, respectively). No breed effect was detected for the amounts of gelatinases and plasminogen activator inhibitor 1. However, for these parameters, a significant breed x time interaction was obvious, as the Meishan follicles had a greater response to hCG (P < 0.01). Since proteolysis plays a key role in the bioavailability of growth factors such as insulin-like growth factor 1, fibroblast growth factor and transforming growth factor beta, which have the ability to alter gonadotrophin-induced progesterone production in pigs, the differences observed in its control in the present study may explain, at least in part, the different patterns of luteinization observed in Meishan and Large White follicles.  (+info)

Human metabolism of mammalian lignan precursors in raw and processed flaxseed. (5/787)

BACKGROUND: The mammalian lignans enterolactone and enterodiol are produced in the colon by the action of bacteria on the plant precursor secoisolariciresinol diglycoside, which is found in high concentrations in flaxseed. OBJECTIVE: Two experiments were conducted to determine 1) whether there is a dose response in urinary lignan excretion with increasing flaxseed intake, 2) whether flaxseed processing affects lignan excretion, 3) peak plasma lignan concentrations, and 4) plasma lignan concentrations after chronic supplementation. DESIGN: Nine healthy young women supplemented their diets with 5, 15, or 25 g raw or 25 g processed (muffin or bread) flaxseed for 7 d during the follicular phase of their menstrual cycles. Twenty-four-hour urine samples were collected at baseline and on the final day of supplementation. As an adjunct to the 25-g-flaxseed arm, subjects consumed the supplement for an additional day and blood and urine samples were collected at specific intervals. All blood and urine samples were analyzed for enterolactone and enterodiol by gas chromatography-mass spectroscopy. RESULTS: A dose-dependent urinary lignan response to raw flaxseed was observed (r = 0.72, P < 0.001). The processing of flaxseed as a muffin or bread did not affect the quantity of lignan excretion. Plasma lignan concentrations were greater (P < or = 0.05) than baseline by 9 h after flaxseed ingestion (29.35+/-3.69 and 51.75+/-7.49 nmol/L, respectively). The total plasma area under the curve was higher on the eighth than on the first day (1840.15+/-343.02 and 1027.15+/-95.71 nmol x h/L, respectively). CONCLUSION: Mammalian lignan production from flaxseed precursors is dependent on time and dose but not on processing.  (+info)

A quantitative study of changes in the human corpus luteum microvasculature during the menstrual cycle. (6/787)

Endothelial cells are the most abundant cell type in the corpus luteum (CL), and changes in blood vessels have been proposed to play a pivotal role in CL regression. We have studied quantitatively the changes in the human granulosa-luteal microvasculature in CL of various ages: young (Days 17-19 of the cycle), mature (Days 20-24), old (Days 25-27), early regressing (follicular phase of the following cycle), and late regressing (luteal phase of the following cycle). Blood vessels were identified by immunohistochemical staining for the endothelial cell marker CD34. Because of the anisotropy of blood vessels, both vertical and transverse sections of the granulosa-lutein layer (GLL) were used to estimate relative (volume, surface, and length densities) and absolute (mean cross-sectional area) vascular variables. Full luteinization from young to mature CL was accompanied by a 61% increase in the mean cross-sectional area of vascular profiles and a 52% increase in the mean volume of granulosa-lutein cells, as an estimator of changes in the volume of the GLL. In old and early regressing CL, there was a progressive increase in relative structural vascular variables, due to the shrinkage of the GLL, whereas the mean cross-sectional area of capillaries showed a 53% decrease from mature to old CL. Finally, in late regressing CL, there was a decrease in most relative structural variables, in spite of the increasingly shrunken GLL. The decrease in the capillary diameter found at the late luteal phase most likely leads to a decreased blood flow, and early changes in blood vessels could initiate and/or accelerate CL regression.  (+info)

Induction of macrophage migration inhibitory factor in human ovary by human chorionic gonadotrophin. (7/787)

The role of macrophage migration inhibitory factor (MIF) in human ovarian function remains obscure. The aim of this study was to investigate how MIF was related to ovulation by quantitative analysis of serum, follicular fluid and culture medium of granulosa cells obtained from in-vitro fertilization (IVF) and embryo transfer patients. Serum MIF concentrations in ovarian stimulation cycles for IVF-embryo transfer were higher at day 1 (median 92.6 ng/ml), which took place 35 h after human chorionic gonadotrophin (HCG) administration and just before the retrieval of oocytes, than those before day -6 (12.1 ng/ml), at day -5 to about day 0 (17.5 ng/ml) or at day 2 to about day 14 (8.2 ng/ml). MIF concentrations in the follicular fluid (113.4 ng/ml) obtained in ovarian stimulation cycles for IVF-embryo transfer were significantly higher than in serum (72.0 ng/ml) collected at the same time. MIF concentrations in the follicular fluid in natural cycles were higher in the ovulatory phase (51.6 ng/ml) than in the late follicular phase (13.8 ng/ml). MIF concentrations in the culture media of granulosa cells increased from 3.2 ng/ml to 7.2 ng/ml with HCG stimulation, and decreased from 2.4 ng/ml to 1.2 ng/ml when stimulation was withheld. These results indicate that HCG can induce the elevation of serum and follicular fluid MIF concentrations through the stimulation of ovarian cells, and that MIF is probably involved in the mechanism of ovulation.  (+info)

Fluctuations in CA 125 and CA 15-3 serum concentrations during spontaneous ovulatory cycles. (8/787)

The aim of this study was to investigate cycle dependent changes of serum CA 125 and CA 15-3 concentrations during spontaneous ovulatory cycles. Twenty apparently healthy women with spontaneous menstrual cycles attending our infertility clinic were included. Of these women, 18 had occluded tubes as a result of sterilization. Ovulation was confirmed by luteinizing hormone test and ultrasonography and, to exclude endometriosis, a laparoscopy was performed. Serum samples for CA 125, CA 15-3, 17 beta-oestradiol and progesterone determinations were taken every second day starting on the 2nd day of the cycle until the 7th day of the next cycle. After correction for inter-individual variation in serum concentrations, highest CA 125 concentrations were found during the menstruation. During the follicular and peri-ovulatory phase CA 125 serum concentrations were lowest. For CA 15-3, serum concentrations were not statistically different throughout the cycle. CA 125 and oestradiol concentrations were negatively correlated, CA 15-3 and oestradiol concentrations were positively correlated. Absolute serum concentrations of both CA 125 and CA 15-3 vary among females. Within the female, fluctuations of CA 125 are phase related. In the population studied most of the patients had tubal obstruction and high CA 125 serum concentrations during menstruation, which revokes the theory that the menstrual rise of CA 125 is due only to retrograde menstruation.  (+info)