Effect of inhibition of cholesterol synthetic pathway on the activation of Ras and MAP kinase in mesangial cells. (1/5946)

Intermediary metabolites of cholesterol synthetic pathway are involved in cell proliferation. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, blocks mevalonate synthesis, and has been shown to inhibit mesangial cell proliferation associated with diverse glomerular diseases. Since inhibition of farnesylation and plasma membrane anchorage of the Ras proteins is one suggested mechanism by which lovastatin prevents cellular proliferation, we investigated the effect of lovastatin and key mevalonate metabolites on the activation of mitogen-activated protein kinase (MAP kinase) and Ras in murine glomerular mesangial cells. The preincubation of mesangial cells with lovastatin inhibited the activation of MAP kinase stimulated by either FBS, PDGF, or EGF. Mevalonic acid and farnesyl-pyrophosphate, but not cholesterol or LDL, significantly prevented lovastatin-induced inhibition of agonist-stimulated MAP kinase. Lovastatin inhibited agonist-induced activation of Ras, and mevalonic acid and farnesylpyrophosphate antagonized this effect. Parallel to the MAP kinase and Ras data, lovastatin suppressed cell growth stimulated by serum, and mevalonic acid and farnesylpyrophosphate prevented lovastatin-mediated inhibition of cellular growth. These results suggest that lovastatin, by inhibiting the synthesis of farnesol, a key isoprenoid metabolite of mevalonate, modulates Ras-mediated cell signaling events associated with mesangial cell proliferation.  (+info)

Age-dependent decline in mitogenic stimulation of hepatocytes. Reduced association between Shc and the epidermal growth factor receptor is coupled to decreased activation of Raf and extracellular signal-regulated kinases. (2/5946)

The proliferative potential of the liver has been well documented to decline with age. However, the molecular mechanism of this phenomenon is not well understood. Cellular proliferation is the result of growth factor-receptor binding and activation of cellular signaling pathways to regulate specific gene transcription. To determine the mechanism of the age-related difference in proliferation, we evaluated extracellular signal-regulated kinase-mitogen-activated protein kinase activation and events upstream in the signaling pathway in epidermal growth factor (EGF)-stimulated hepatocytes isolated from young and old rats. We confirm the age-associated decrease in extracellular signal-regulated kinase-mitogen-activated protein kinase activation in response to EGF that has been previously reported. We also find that the activity of the upstream kinase, Raf kinase, is decreased in hepatocytes from old compared with young rats. An early age-related difference in the EGF-stimulated pathway is shown to be the decreased ability of the adapter protein, Shc, to associate with the EGF receptor through the Shc phosphotyrosine binding domain. To address the mechanism of decreased Shc/EGF receptor interaction, we examined the phosphorylation of the EGF receptor at tyrosine 1173, a site recognized by the Shc phosphotyrosine binding domain. Tyrosine 1173 of the EGF receptor is underphosphorylated in the hepatocytes from old animals compared with young in a Western blot analysis using a phosphospecific antibody that recognizes phosphotyrosine 1173 of the EGF receptor. These data suggest that a molecular mechanism underlying the age-associated decrease in hepatocyte proliferation involves an age-dependent regulation of site-specific tyrosine residue phosphorylation on the EGF receptor.  (+info)

Genetic analysis of rolled, which encodes a Drosophila mitogen-activated protein kinase. (3/5946)

Genetic and molecular characterization of the dominant suppressors of D-raf(C110) on the second chromosome identified two gain-of-function alleles of rolled (rl), which encodes a mitogen-activated protein (MAP) kinase in Drosophila. One of the alleles, rl(Su23), was found to bear the same molecular lesion as rl(Sem), which has been reported to be dominant female sterile. However, rl(Su23) and the current stock of rl(Sem) showed only a weak dominant female sterility. Detailed analyses of the rl mutations demonstrated moderate dominant activities of these alleles in the Torso (Tor) signaling pathway, which explains the weak dominant female sterility observed in this study. The dominant rl mutations failed to suppress the terminal class maternal-effect mutations, suggesting that activation of Rl is essential, but not sufficient, for Tor signaling. Involvement of rl in cell proliferation was also demonstrated by clonal analysis. Branching and integration of signals in the MAP kinase cascade is discussed.  (+info)

Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. (4/5946)

Ciliary neurotrophic factor (CNTF) is pleiotrophic for central, peripheral, and sensory neurons. In the mature retina, CNTF treatment enhances survival of retinal ganglion and photoreceptor cells exposed to otherwise lethal perturbation. To understand its mechanism of action in vivo, the adult rat retina was used as a model to investigate CNTF-mediated activation of Janus kinase/signal transducer and activator of transcription (Jak-STAT) and ras-mitogen activated protein kinase (ras-MAPK). Intravitreal injection of Axokine, an analog of CNTF, phosphorylates STAT3 and MAPK and produces delayed upregulation of total STAT3 and STAT1 protein in rat retina. Activated STAT3 is predominantly localized in nuclei of retinal Muller (glial) cells, ganglion cells, and astrocytes, but not in photoreceptors. Although CNTF alpha-receptor (CNTFRalpha) mRNA and protein are localized predominantly if not exclusively in retinal neurons, coincident CNTF-mediated STAT3 signaling was observed in both glia and neurons. CNTF-induced activation of Jak-STAT signaling prompted us to investigate STAT3 phosphorylation after a variety of stress-mediated, conditioning stimuli. We show that STAT3 is activated in the retina after exposure to subtoxic bright light, mechanical trauma, and systemic administration of the alpha(2)-adrenergic agonist xylazine, all of which have been shown previously to condition photoreceptors to resist light-induced degeneration. These results demonstrate that CNTF directly stimulates Jak-STAT and ras-MAPK cascades in vivo and strongly suggest that STAT3 signaling is an underlying component of neural responsiveness to stress stimuli. The observation that CNTF activates STAT3 in ganglion cells, but not in photoreceptors, suggests that Jak-STAT signaling influences neuronal survival via both direct and indirect modes of action.  (+info)

EGF receptor/Rolled MAP kinase signalling protects cells against activated Armadillo in the Drosophila eye. (5/5946)

beta-catenin/Armadillo are transcriptional co-activators that mediate Wnt signalling in normal development. Activated forms of beta-catenin are oncogenic. We have constructed mutant forms of Drosophila Armadillo which correspond to common human oncogenic mutations, and find them to activate Armadillo constitutively. When expressed in the Drosophila eye, these eventually induce apoptosis in all cell types. Intriguingly, cells in the eye are resistant to the effects of activated Armadillo for a long period prior to the onset of cell death at the mid-pupal stage. This latency is conferred by EGF receptor (EGFR)/MAP kinase signalling, which prevents activated Armadillo from inducing apoptosis; when EGFR signalling naturally ceases, the cells rapidly die. Nemo, the Drosophila homologue of NLK in mice and LIT-1 in Caenorhabditis elegans, does not antagonize activated Armadillo, suggesting that the Nemo-like MAP kinases may not generally interact with Armadillo/beta-catenin. Thus, our results show that activated Armadillo is subject to a specific negative control by EGFR/Rolled MAP kinase signalling.  (+info)

ERK7 is an autoactivated member of the MAPK family. (6/5946)

Extracellular signal-regulated kinase 7 (ERK7) shares significant sequence homology with other members of the ERK family of signal transduction proteins, including the signature TEY activation motif. However, ERK7 has several distinguishing characteristics. Unlike other ERKs, ERK7 has been shown to have significant constitutive activity in serum-starved cells, which is not increased further by extracellular stimuli that typically activate other members of the mitogen-activated protein kinase (MAPK) family. On the other hand, ERK7's activation state and kinase activity appear to be regulated by its ability to utilize ATP and the presence of its extended C-terminal region. In this study, we investigated the mechanism of ERK7 activation. The results suggest that 1) MAPK kinase (MEK) inhibitors do not suppress ERK7 kinase activity; 2) intramolecular autophosphorylation is sufficient for activation of ERK7 in the absence of an upstream MEK; and 3) multiple regions of the C-terminal domain of ERK7 regulate its kinase activity. Taken together, these results indicate that autophosphorylation is sufficient for ERK7 activation and that the C-terminal domain regulates its kinase activity through multiple interactions.  (+info)

Drosophila Fos mediates ERK and JNK signals via distinct phosphorylation sites. (7/5946)

During Drosophila development Fos acts downstream from the JNK pathway. Here we show that it can also mediate ERK signaling in wing vein formation and photoreceptor differentiation. Drosophila JNK and ERK phosphorylate D-Fos with overlapping, but distinct, patterns. Analysis of flies expressing phosphorylation site point mutants of D-Fos revealed that the transcription factor responds differentially to JNK and ERK signals. Mutations in the phosphorylation sites for JNK interfere specifically with the biological effects of JNK activation, whereas mutations in ERK phosphorylation sites affect responses to the EGF receptor-Ras-ERK pathway. These results indicate that the distinction between ERK and JNK signals can be made at the level of D-Fos, and that different pathway-specific phosphorylated forms of the protein can elicit different responses.  (+info)

A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. (8/5946)

Output from the circadian clock controls rhythmic behavior through poorly understood mechanisms. In Drosophila, null mutations of the neurofibromatosis-1 (Nf1) gene produce abnormalities of circadian rhythms in locomotor activity. Mutant flies show normal oscillations of the clock genes period (per) and timeless (tim) and of their corresponding proteins, but altered oscillations and levels of a clock-controlled reporter. Mitogen-activated protein kinase (MAPK) activity is increased in Nf1 mutants, and the circadian phenotype is rescued by loss-of-function mutations in the Ras/MAPK pathway. Thus, Nf1 signals through Ras/MAPK in Drosophila. Immunohistochemical staining revealed a circadian oscillation of phospho-MAPK in the vicinity of nerve terminals containing pigment-dispersing factor (PDF), a secreted output from clock cells, suggesting a coupling of PDF to Ras/MAPK signaling.  (+info)