Potent mast cell degranulation and vascular permeability triggered by urocortin through activation of corticotropin-releasing hormone receptors. (1/338)

Urocortin (Ucn) is related to corticotropin-releasing hormone (CRH), and both are released in the brain under stress where they stimulate CRH 1 and 2 receptors (CRHR). Outside the brain, they may have proinflammatory actions through activation of mast cells, which are located perivascularly close to nerve endings and degranulate in response to acute psychological stress. Here, we report that a concentration of intradermal Ucn as low as 10 nM induced dose-dependent rat skin mast cell degranulation and increased vascular permeability. This effect appeared to be equipotent to that of calcitonin gene-related peptide and neurotensin. Ucn-induced skin vasodilation was inhibited by pretreatment with the mast cell stabilizer disodium cromoglycate (cromolyn) and was absent in the mast cell-deficient W/Wv mice. The selective nonpeptide CRH receptor 1 antagonist, antalarmin and the nonselective peptide antagonist astressin both reduced vascular permeability triggered by Ucn but not that by Substance P or histamine. In contrast, the peptide antagonist alpha-helical CRH-(9-41) reduced the effect of all three. The vasodilatory effect of Ucn was largely inhibited by pretreatment with H1 receptor antagonists, suggesting that histamine is the major mediator involved in vitro. Neuropeptide depletion of sensory neurons, treatment with the ganglionic blocker hexamethonium, or in situ skin infiltration with the local anesthetic lidocaine did not affect Ucn-induced vascular permeability, indicating that its in situ effect was not mediated through the peripheral nervous system. These results indicate that Ucn is one of the most potent triggers of rat mast cell degranulation and skin vascular permeability. This effect of Ucn may explain stress-induced disorders, such as atopic dermatitis or psoriasis, and may lead to new forms of treatment.  (+info)

C-fiber depletion alters response properties of neurons in trigeminal nucleus principalis. (2/338)

The effects of C-fiber depletion induced by neonatal capsaicin treatment on the functional properties of vibrissa-sensitive low-threshold mechanoreceptive (LTM) neurons in the rat trigeminal nucleus principalis were examined in adult rats. Neonatal rats were injected either with capsaicin or its vehicle within 48 h of birth. The depletion of unmyelinated afferents was confirmed by the significant decrease in plasma extravasation of Evan's blue dye induced in the hindlimb skin of capsaicin-treated rats by cutaneous application of mustard oil and by the significant decrease of unmyelinated fibers in both the sciatic and infraorbital nerves. The mechanoreceptive field (RF) and response properties of 31 vibrissa-sensitive neurons in capsaicin-treated rats were compared with those of 32 vibrissa-sensitive neurons in control (untreated or vehicle-treated) rats. The use of electronically controlled mechanical stimuli allowed quantitative analysis of response properties of vibrissa-sensitive neurons; these included the number of center- and surround-RF vibrissae within the RF (i.e., those vibrissae which when stimulated elicited >/=1 and <1 action potential per stimulus, respectively), the response magnitude and latency, and the selectivity of responses to stimulation of vibrissae in different directions with emphasis on combining both the response magnitude and direction of vibrissal deflection in a vector analysis. Neonatal capsaicin treatment was associated with significant increases in the total number of vibrissae, in the number of center-RF vibrissae per neuronal RF, and in the percentage of vibrissa-sensitive neurons that also responded to stimulation of other types of orofacial tissues. Compared with control rats, capsaicin-treated rats showed significant increases in the response magnitude to stimulation of surround-RF vibrissae as well as in response latency variability to stimulation of both center- and surround-RF vibrissae. C-fiber depletion also significantly altered the directional selectivity of responses to stimulation of vibrissae. For neurons with multiple center-RF vibrissae, the proportion of center-RF vibrissae with net vector responses oriented toward the same quadrant was significantly less in capsaicin-treated compared with control rats. These changes in the functional properties of principalis vibrissa-sensitive neurons associated with marked depletion of C-fiber afferents are consistent with similarly induced alterations in LTM neurons studied at other levels of the rodent somatosensory system, and indeed may contribute to alterations previously described in the somatosensory cortex of adult rodents. Furthermore, these results provide additional support to the view that C fibers may have an important role in shaping the functional properties of LTM neurons in central somatosensory pathways.  (+info)

Neurogenic plasma leakage in mouse airways. (3/338)

1. This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. 2. Single bolus intravenous injections of capsaicin (0.5 and 1 micromol kg(-1), i.v.) or substance P (1, 10 and 37 nmol kg(-10, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. 3. Pretreatment with captopril (2.5 mg kg(-1), i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg(-1), i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg(-1), i.v.). 4. After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg(-1), i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg(-1), i.v.). 5. Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. 6. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature.  (+info)

Human hepatitis B virus X protein is detectable in nuclei of transfected cells, and is active for transactivation. (4/338)

Subcellular localization and transactivation of human hepatitis B virus X protein (HBx), a plausible causative factor for hepatocellular carcinogenesis, were studied in transiently transfected cells. The transactivation was detected not only by the cis-element driven chloramphenicol acetyltransferase (CAT) assay but also by immunostaining of CAT protein cotransfected into human hepatoma cell line HepG2. Scanning fluorescence microscopy showed the majority of immunological signals of HBx to be at the perinuclear region of transfected cytoplasm. HBx was also clearly detectable in the nucleus, though less intensely expressed. This was confirmed by Western analysis and coimmunoprecipitation of HBx with transcription factor IIB (TFIIB) in subcellular fractionations. The percentage of HBx-positive cells coincided with that of CAT-positive cells, and confocal laser microscopy revealed the coexistence of CAT signals in GFP-HBx positive cells. The SV40 large T antigen nuclear localization signal (NLS) appended HBx, regardless of whether NLS was added to the N- or C-terminus, transactivated all the examined X-responsive elements (XRE) similarly as did wild-type HBx. Similar results were obtained in p53 negative Saos-2 cells. The detected nuclear HBx may be involved in modulating the transcription at the promoter level whereas the HBx in cytoplasm may be working through signal transduction pathways.  (+info)

The porcine bronchial artery: surgical and angiographic anatomy. (5/338)

The pig is often used in experimental studies on the significance of bronchial artery circulation, but the anatomy of this artery is only poorly described. The purpose of this study was to improve the anatomical basis for experimental studies on the porcine bronchial artery circulation. The origin of the artery from the aorta is described in 32 pigs. Heart-lung blocks were perfused with saline and removed in 16 pigs, and the broncho-oesophageal orifice was identified and cannulated. In these 16 specimens the intrapulmonary ramification was studied by angiography, and the extrapulmonary distribution and supply area by injection of Evans Blue. The broncho-oesophageal artery originated from the aorta as a single trunk in 91%. Angiography showed that each principal bronchus was accompanied by 2 bronchial artery branches far into the lung parenchyma. The central branching pattern of the artery between the aorta and the principal bronchi was divided into 3 subtypes. Evans Blue showed communication with the whole mediastinum. The anatomical relations are described. It is concluded that the broncho-oesophageal artery divides to follow each bronchus with 2 bronchial branches. A nomenclature for these branches is suggested. The pig anatomy is suited for experimental investigations on the bronchial circulation.  (+info)

Changes in colonic mucosal permeability in mouse colitis induced with dextran sulfate sodium. (6/338)

In this study we examined changes in colonic mucosal permeability induced by dextran sulfate sodium (DSS) during the acute phase of mouse colitis. To induce colitis, the mice were given drinking water containing 5% (w/v) DSS (MW = 40,000) ad libitum. Colonic mucosal permeability was evaluated by the permeation of Evans blue (EB) from the lumen into the wall of the colon on 1, 2, 3 and 7 days postadministration of DSS. Mucosal changes were also histologically examined daily for 7 days postadministration. The permeation of EB increased significantly by days 3 and 7 postadministration. Histological analysis showed that crypt loss was the initial change, with no inflammatory process and the surface mucosal epithelial cells remained morphologically intact. These histological changes developed on 2 to 3 days postadministration. Erosion was first recognized at 5 days postadministration. These findings indicated that the increase in colonic mucosal permeability may have occurred in 3 days postadministration, and the increase in mucosal permeability occurred before the appearance of the inflammatory process. This suggests that an increase in colonic mucosal permeability, leading to the destruction of mucosal barrier function, may play an important role in the induction of DSS-induced murine colitis.  (+info)

Impairment of transalveolar fluid transport and lung Na(+)-K(+)-ATPase function by hypoxia in rats. (7/338)

We examined whether hypoxic exposure in vivo would influence transalveolar fluid transport in rats. We found a significant decrease in alveolar fluid clearance of the rats exposed to 10% oxygen for 48 h. Terbutaline did not stimulate alveolar fluid clearance, and alveolar fluid cAMP levels were lower than those determined in normoxia experiment. Hypoxia did not influence the alveolar fluid lactate dehydrogenase levels, Evans blue dye fluid-to-serum concentration ratio, or lung wet-to-dry weight ratio, indicating no significant change in the permeability of alveolar-capillary barrier. Histological examination showed no significant fluid accumulation into the interstitium and the alveolar space. Hypoxia did not reduce lung ATP content; however, we found significant decrease in Na(+)-K(+)-ATPase hydrolytic activity in lung tissue preparations and isolated alveolar type II cells. Our data indicate that hypoxic exposure in vivo impairs transalveolar fluid transport, and this impairment is related to the decrease in alveolar epithelial Na(+)-K(+)-ATPase hydrolytic activity but is not secondary to the alteration of cellular energy source.  (+info)

Pressure and volume overloads are associated with ventricular hypertrophy in male rainbow trout. (8/338)

We investigated whether ventricular hypertrophy in reproductively mature male trout (Oncorhynchus mykiss) is associated with elevated hemodynamic loads. We measured ventral aortic blood pressure, pulse pressure dynamics, and blood volume in cannulated, unanesthetized trout with a wide range of relative ventricle masses (RVM, 0.076-0.199% of body wt). We also investigated in vitro pressure-volume dynamics in the bulbus arteriosus taken from trout with a wide range of RVMs. RVM was positively correlated with peak systolic pressure (SBP), mean blood pressure, and pulse pressure. Diastolic pressure and the absolute duration of arterial systole were similar among all animals, but a lower heart rate and a smaller relative duration of arterial systole were correlated with increasing RVM. Blood volume was expanded up to 34% as ventricles enlarged, and clearance of Evans blue dye was greater at higher SBP. Mass, maximal volume, and the pressure-volume dynamics of the bulbus were similar among all animals, suggesting that the bulbus did not compensate for ventricular enlargement. This conclusion was supported by the elevated maximal rates of arterial pressure development (+dP/dt) and decay (-dP/dt) observed as RVM increased. We conclude that 1) mature trout are hypertensive and hypervolemic, 2) the dynamics of the bulbus may contribute to increased afterload, and 3) these changes in hemodynamic load may promote ventricular hypertrophy.  (+info)