Cloning, characterization, and chromosomal location of a novel human K+-Cl- cotransporter. (1/180)

Differential display polymerase chain reaction has been used to isolate genes regulated in vascular endothelial cells by the angiogenic factor vascular endothelial cell growth factor (VEGF). Analysis of one of the bands consistently up-regulated by VEGF led us to the identification of a cDNA from a human umbilical vein endothelial cell library that is 77% identical to the human K+-Cl- cotransporter1 (KCC1). We have referred to the predicted protein as K+-Cl- cotransporter 3 (KCC3). Hydrophobicity analysis of the KCC3 amino acid sequence showed an almost identical pattern to KCC1, suggesting 12 membrane-spanning segments, a large extracellular loop with potential N-glycosylation sites, and cytoplasmic N- and C-terminal regions. The KCC3 mRNA was highly expressed in brain, heart, skeletal muscle, and kidney, showing a distinct pattern and size from KCC1 and KCC2. The KCC3 mRNA level in endothelial cells increased on treatment with VEGF and decreased with the proinflammatory cytokine tumor necrosis factor alpha, whereas KCC1 mRNA levels remained unchanged. Stable overexpression of KCC3 cDNA in HEK293 cells produced a glycoprotein of approximately 150 kDa, which was reduced to 120 kDa by glycosidase digestion. An increased initial uptake rate of 86Rb was seen in clones with high KCC3 expression, which was dependent on extracellular Cl- but not Na+ and was inhibitable by the loop diuretic agent furosemide. The KCC3 genomic localization was shown to be 15q13 by fluorescence in situ hybridization. Radiation hybrid analysis placed KCC3 within an area associated with juvenile myoclonic epilepsy. These results suggest KCC3 is a new member of the KCC family that is under distinct regulation from KCC1.  (+info)

Evidence for linkage of adolescent-onset idiopathic generalized epilepsies to chromosome 8-and genetic heterogeneity. (2/180)

Several loci and candidate genes for epilepsies or epileptic syndromes map or have been suggested to map to chromosome 8. We investigated families with adolescent-onset idiopathic generalized epilepsy (IGE), for linkage to markers spanning chromosome 8. The IGEs that we studied included juvenile myoclonic epilepsy (JME), epilepsy with only generalized tonic-clonic seizures occurring either randomly during the day (random grand mal) or on awakening (awakening grand mal), and juvenile absence epilepsy (JAE). We looked for a gene common to all these IGEs, but we also investigated linkage to specific subforms of IGE. We found evidence for linkage to chromosome 8 in adolescent-onset IGE families in which JME was not present. The maximum multipoint LOD score was 3.24 when family members with IGE or generalized spike-and-waves (SW) were considered affected. The LOD score remained very similar (3.18) when clinically normal family members with SW were not considered to be affected. Families with either pure grand mal epilepsy or absence epilepsy contributed equally to the positive LOD score. The area where the LOD score reaches the maximum encompasses the location of the gene for the beta3-subunit of the nicotinic acetylcholine receptor (CHRNB3), thus making this gene a possible candidate for these specific forms of adolescent-onset IGE. The data excluded linkage of JME to this region. These results indicate genetic heterogeneity within IGE and provide no evidence, on chromosome 8, for a gene common to all IGEs.  (+info)

Localization of a gene for benign adult familial myoclonic epilepsy to chromosome 8q23.3-q24.1. (3/180)

Benign adult familial myoclonic epilepsy is an autosomal dominant idiopathic epileptic syndrome characterized by adult-onset tremulous finger movement, myoclonus, epileptic seizures, and nonprogressive course. It was recently recognized in Japanese families. In this study, we report that the gene locus is assigned to the distal long arm of chromosome 8, by linkage analysis in a large Japanese kindred with a maximum two-point LOD score of 4.31 for D8S555 at recombination fraction of 0 (maximum multipoint LOD score of 5.42 for the interval between D8S555 and D8S1779). Analyses of recombinations place the locus within an 8-cM interval, between D8S1784 and D8S1694, in which three markers, D8S1830, D8S555, and D8S1779, show no recombination with the phenotypes. Although three other epilepsy-related loci on chromosome 8q have been recognized-one on chromosome 8q13-21 (familial febrile convulsion) and two others on chromosome 8q24 (KCNQ3 and childhood absence epilepsy)-the locus assigned here is distinct from these three epilepsy-related loci. This study establishes the presence of a new epilepsy-related locus on 8q23.3-q24.11.  (+info)

Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine-scale genetic mapping. (4/180)

Linkage disequilibrium (LD) is of great interest for gene mapping and the study of population history. We propose a multilocus model for LD, based on the decay of haplotype sharing (DHS). The DHS model is most appropriate when the LD in which one is interested is due to the introduction of a variant on an ancestral haplotype, with recombinations in succeeding generations resulting in preservation of only a small region of the ancestral haplotype around the variant. This is generally the scenario of interest for gene mapping by LD. The DHS parameter is a measure of LD that can be interpreted as the expected genetic distance to which the ancestral haplotype is preserved, or, equivalently, 1/(time in generations to the ancestral haplotype). The method allows for multiple origins of alleles and for mutations, and it takes into account missing observations and ambiguities in haplotype determination, via a hidden Markov model. Whereas most commonly used measures of LD apply to pairs of loci, the DHS measure is designed for application to the densely mapped haplotype data that are increasingly available. The DHS method explicitly models the dependence among multiple tightly linked loci on a chromosome. When the assumptions about population structure are sufficiently tractable, the estimate of LD is obtained by maximum likelihood. For more-complicated models of population history, we find means and covariances based on the model and solve a quasi-score estimating equation. Simulations show that this approach works extremely well both for estimation of LD and for fine mapping. We apply the DHS method to published data sets for cystic fibrosis and progressive myoclonus epilepsy.  (+info)

Dopey's seizure. (5/180)

Angelman syndrome is a neurogenetic condition namely characterized by developmental delay, virtual absence of expressive verbal language, peculiar organization of movement, seizures and happy demeanor. This syndrome has been recognized since 1965, but it seems that Walt Disney presented an original depiction of it in his first full-length animated film, including myoclonic jerks and an apparently generalized tonic-clonic seizure.  (+info)

Instability of the EPM1 minisatellite. (6/180)

Inherited mutations in the cystatin B gene ( CSTB ) are responsible for progressive myoclonus epilepsy type 1 (EPM1; MIM 254800). This autosomal recessive disease is characterized by variable progression to mental retardation, dementia and ataxia. The majority of EPM1 alleles identified to date contain expansions of a dodecamer repeat located upstream of the transcription start site of the CSTB gene. Normal alleles contain two or three copies of the repeat, whereas pathogenic alleles contain >40 repeats. We examined the meiotic stability of pathogenic, expanded EPM1 alleles from 17 EPM1 families by employing a fluorescence-based PCR-based genotyping assay capable of detecting single dodecamer repeat unit differences on an automated DNA sequencer. We followed 74 expanded allele transmissions to 30 affected individuals and 22 carriers. Thirty-five of 74 expanded allele transmissions demonstrated either contraction or expansion of the minisatellite, typically by a single repeat unit. Thus expanded alleles of the EPM1 minisatellite demonstrate a mutation rate of 47%, the highest yet observed for pathogenetic alleles of a human minisatellite.  (+info)

Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. (7/180)

MRI scans of patients with idiopathic generalized epilepsy (IGE) are normal on visual assessment. Using an interactive anatomical segmentation technique and volume-of-interest measurements of MRI, we showed recently that patients with IGE had significantly larger cortical grey matter than control subjects. Further, 40% of individual patients with juvenile myoclonic epilepsy (JME), a syndrome of IGE in adolescence, had significant abnormalities of cerebral structure. In this study, we applied the automated and objective technique of statistical parametric mapping (SPM) to the analysis of structural MRI from 20 patients with JME and 30 control subjects. The cortical grey matter of each individual JME patient and the group of JME patients was contrasted with that of the group of 30 normal subjects. The voxel-based SPM comparison between the group of JME patients and the control subjects showed an increase in cortical grey matter in the mesial frontal lobes of the patients. Analysis of individual patients revealed significant abnormalities of cortical grey matter in five out of 20 JME patients, four of whom had been shown to have widespread abnormalities using the previous volume of interest technique. These findings indicate a structural cerebral abnormality in JME, with involvement of mesiofrontal cortical structures.  (+info)

Neuropsychological EEG activation in patients with epilepsy. (8/180)

To examine the effects of higher mental activity on the EEG, 480 Japanese patients with different types of epilepsy were subjected to potentially provocative cognitive tasking, termed 'neuropsychological EEG activation' (NPA), during standard EEG recordings. NPA tasks consisted of reading, speaking, writing, written arithmetic calculation, mental arithmetic calculation and spatial construction. The NPA tasks provoked epileptic discharges in 38 patients (7.9%) and were accompanied by myoclonic seizures in 15 patients, absence seizures in eight and simple partial seizures in one. Among the cognitive tasks, mental activities mainly associated with use of the hands, i.e. writing (68.4%), written calculation (55. 3%) and spatial conction (63.2%), provoked the most discharges, followed by mental calculation (7.9%) and reading (5.3%). Detailed examination of the precipitating events revealed action-programming type activities to be the most crucial in 32 out of the 38 patients (84.2%), followed by thinking type activities in four patients (10. 5%). Regarding the classification of epilepsies proposed by the International League Against Epilepsy, seizure-precipitating mental activities in our series were almost exclusively (in 36 out of the 38 patients) related to idiopathic generalized epilepsies (IGEs) including juvenile myoclonic epilepsy, juvenile absence epilepsy, grand mal epilepsy on awakening and childhood absence epilepsy, and were rarely (in only two out of the 38 patients) related to temporal lobe epilepsy. In our IGE patients, the provocative effects of NPA were related to myoclonic seizures rather than absence or generalized tonic-clonic seizures. These results suggest that NPA is a useful tool for examining the relationship between cognitive function and epileptic seizures, and that the IGE patients with myoclonic seizures are vulnerable to higher mental activities requiring action-programming or thinking.  (+info)