Chick cochlear hair cell exocytosis mediated by dihydropyridine-sensitive calcium channels. (1/313)

1. A semi-intact preparation of the chick basilar papilla was developed to study calcium-dependent neurotransmitter release by tall hair cells (avian equivalent of cochlear inner hair cells). 2. Tall hair cell depolarization resulted in changes in cell membrane capacitance (DeltaC(m)) that reflected cell surface area increases following synaptic vesicle exocytosis and provided a surrogate measure of neurotransmitter release. Both calcium current (I(Ca)) and DeltaC(m) were reversibly blocked by cobalt, and exhibited a similar bell-shaped dependency on voltage with a peak response around -10 mV. 3. Pharmacological agents selective for L-type calcium channels were employed to assess the role of this channel type in neurotransmitter exocytosis. Nimodipine, a dihydropyridine (DHP) antagonist, suppressed I(Ca) and blocked DeltaC(m). Conversely, the DHP agonist Bay K 8644 increased both I(Ca) and DeltaC(m) amplitude nearly 3-fold. These findings suggest that chick tall hair cell neurotransmitter release is mediated by calcium influx through L-type calcium channels.  (+info)

The actions of barium and strontium on exocytosis and endocytosis in the synaptic terminal of goldfish bipolar cells. (2/313)

1. We investigated the properties of Ca2+-sensitive steps in the cycling of synaptic vesicles by comparing the actions of Ca2+, Ba2+ and Sr2+ in the synaptic terminal of depolarizing bipolar cells isolated from the retina of goldfish. FM1-43 fluorescence and capacitance measurements demonstrated that exocytosis, endocytosis and vesicle mobilization were maintained when external Ca2+ was replaced by either Ba2+ or Sr2+. 2. The rapidly releasable pool of vesicles (RRP) was equivalent to 1.5 % of the membrane surface area when measured in the presence of 2.5 mM Ca2+, but only 0.4 % in 2.5 mM Sr2+. The relative sizes of the RRP in Ca2+, Sr2+ and Ba2+ were 1.0, 0.28 and 0.1, respectively. We conclude that a smaller proportion of docked vesicles are available for fast exocytosis triggered by the influx of Sr2+ or Ba2+ compared to Ca2+. 3. The slow phase of exocytosis was not altered when Ca2+ was replaced by Ba2+, but it was accelerated 1.6-fold in Sr2+. The peak concentrations of Ca2+, Sr2+ and Ba2+ (measured using Mag-fura-5) were approximately 4, approximately 14 and approximately 60 microM, respectively. The order of efficiency for the stimulation of slow exocytosis was Ca2+ approximately Sr2+ > Ba2+. 4. Exocytosis was prolonged after the influx of Sr2+ and Ba2+. Sr2+ was cleared from the synaptic terminal with the same time constant as Ca2+ (1.3 s), but Ba2+ was cleared 10-100 times more slowly. Although Ba(2+) stimulates the slow release of a large number of vesicles, it did so less efficiently than Ca2+ or Sr2+. 5. The recovery of the membrane capacitance was equally rapid in Sr2+ and Ca2+, demonstrating that the fast mode of endocytosis could be triggered by either cation.  (+info)

T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. (3/313)

Transmitter release in neurons is thought to be mediated exclusively by high-voltage-activated (HVA) Ca(2+) channels. However, we now report that, in retinal bipolar cells, low-voltage-activated (LVA) Ca(2+) channels also mediate neurotransmitter release. Bipolar cells are specialized neurons that release neurotransmitter in response to graded depolarizations. Here we show that these cells express T-type Ca(2+) channel subunits and functional LVA Ca(2+) currents sensitive to mibefradil. Activation of these currents results in Ca(2+) influx into presynaptic terminals and exocytosis, which we detected as a capacitance increase in isolated terminals and the appearance of reciprocal currents in retinal slices. The involvement of T-type Ca(2+) channels in bipolar cell transmitter release may contribute to retinal information processing.  (+info)

Clinical evaluation of defibrillation efficacy with a new single-capacitor biphasic waveform in patients undergoing implantation of an implantable cardioverter defibrillator. (4/313)

AIMS: Improvements in the size and shape of implantable cardioverter defibrillators (ICDs) might be obtained by using one capacitor instead of the series connection of two capacitors traditionally used in ICDs. The aim of this study was to determine whether a biphasic waveform delivered from a single 336 microF capacitor had the same defibrillation efficacy as a standard biphasic waveform. METHODS AND RESULTS: Randomized, paired defibrillation threshold testing was acutely performed in 54 patients undergoing ICD implantation. A standard 140 microF 80% tilt biphasic waveform (two 280 microF capacitors connected in series) was compared with an experimental biphasic waveform delivered from a single 336 microF capacitor at either 60% tilt (33 patients) or 80% tilt (21 patients). All waveforms had a 60/40 phase1/phase2 duration ratio. Compared with the standard waveform, the 60% tilt experimental waveform had a lower delivered energy (6.7 +/- 2.8 vs 7.9 +/- 3.3 joules, P<0.02), lower peak voltage (218 +/- 43 vs 333 +/- 68 V, P<0.01), and a slightly longer pulse duration (13.4 +/- 1.4 vs 10.7 +/- 1.1 ms, P<0.01). Conversely, the 80% tilt experimental waveform had a higher delivered energy (9.1 +/- 3.5 vs 6.3 +/- 2.4 joules, P<0.01), a lower peak voltage (234 +/- 44 vs 302 +/- 51 V, P<0.01) and a much longer pulse duration (25.7 +/- 2.5 vs 1.13 +/- 1 ms, P<0.01). CONCLUSION: Waveforms delivered from a large capacitance are feasible but require a lower tilt. This technique may allow smaller, thinner ICDs without jeopardizing defibrillation success.  (+info)

Glucose sensing based on interdigitated array microelectrode. (5/313)

A micro glucose sensor consisting of an interdigitated array gold microelectrode was developed. The interdigitated array structure, which has 10 microns band width and 10 microns band gap, was fabricated in a small region (2.5 x 5 mm2) on a quartz substrate. Glucose oxidase was chemically fixed onto the electrode surface through self-assembled monolayer of 11-mercaptoundecanoic acid; ferroceneacetic acid was used as electron mediator. Electrochemical properties of the glucose oxidase-immobilized microelectrode were investigated by cyclic voltammogram measurements. Results confirmed that the reductive ferroceneacetic acid generated at counter electrode diffuses through a narrow band gap (10 microns) and can reach the working electrode surface.  (+info)

Low threshold T-type calcium current in rat embryonic chromaffin cells. (6/313)

1. The gating kinetics and functions of low threshold T-type current in cultured chromaffin cells from rats of 19-20 days gestation (E19-E20) were studied using the patch clamp technique. Exocytosis induced by calcium currents was monitored by the measurement of membrane capacitance and amperometry with a carbon fibre sensor. 2. In cells cultured for 1-4 days, the embryonic chromaffin cells were immunohistochemically identified by using polyclonal antibodies against dopamine beta-hydroxylase (DBH) and syntaxin. The immuno-positive cells could be separated into three types, based on the recorded calcium current properties. Type I cells showed exclusively large low threshold T-type current, Type II cells showed only high voltage activated (HVA) calcium channel current and Type III cells showed both T-type and HVA currents. These cells represented 44 %, 46 % and 10 % of the total, respectively. 3. T-type current recorded in Type I cells became detectable at -50 mV, reached its maximum amplitude of 6.8 +/- 1.2 pA pF(-1) (n = 5) at -10 mV and reversed around +50 mV. The current was characterized by criss-crossing kinetics within the -50 to -30 mV voltage range and a slow deactivation (deactivation time constant, tau(d) = 2 ms at -80 mV). The channel closing and inactivation process included both voltage-dependent and voltage-independent steps. The antihypertensive drug mibefradil (200 nM) reduced the current amplitude to about 65 % of control values. Ni(2+) also blocked the current in a dose-dependent manner with an IC(50) of 25 microM. 4. T-type current in Type I cells did not induce exocytosis, while catecholamine secretion by exocytosis could be induced by HVA calcium current in both Type II and Type III cells. The failure to induce exocytosis by T-type current in Type I cells was not due to insufficient Ca(2+) influx through the T-type calcium channel. 5. We suggest that T-type current is expressed in developing immature chromaffin cells. The T-type current is replaced progressively by HVA calcium current during pre- and post-natal development accompanying the functional maturation of the exocytosis mechanism.  (+info)

Effect of basal lamina of ovarian follicle on T- and L-type Ca(2+) currents in differentiated granulosa cells. (7/313)

Patch clamp experiments were conducted to study the effects of basal lamina (basement membrane) of chicken ovarian follicle on membrane Ca(2+) currents in differentiated chicken granulosa cells in a homologous system. The whole cell patch clamp technique was used to simultaneously monitor membrane capacitance (an indirect measure of total cell surface area) and currents flowing through voltage-dependent Ca(2+) channels (using Ba(2+) as the charge carrier). Membrane capacitance was smaller in cells incubated on intact basal lamina than in control cells (incubated on tissue culture-treated plastic substratum). Granulosa cells expressed both T- and L-type Ca(2+) currents, and the amplitudes of the currents in cells incubated on intact basal lamina were significantly lower than those of control cells. Also, granulosa cells incubated on intact basal lamina were found to have significantly lower T- or L-type Ca(2+) current densities than control cells. Intact basal lamina that had been stored for 12 mo produced effects on T- and L-type Ca(2+) currents similar to those caused by freshly isolated basal lamina. The basal lamina was solubilized completely in one step and used to coat glass coverslips (uncoated glass coverslips served as controls). Granulosa cells incubated on coverslips precoated with solubilized basal lamina assumed spherical shape similar to those incubated on intact basal lamina. Similar to the observations made for intact basal lamina, the solubilized basal lamina suppressed T- and L-type Ca(2+) currents in the differentiated granulosa cells. Moreover, fibronectin, laminin, and type IV collagen, obtained from commercial sources, attenuated T- and L-type Ca(2+) currents in the differentiated granulosa cells. This interplay between basal lamina and Ca(2+) currents may be one mechanism that subserves the effects of the matrix material on metabolic functions of granulosa cells.  (+info)

Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. (8/313)

The deafness caused by early onset hypothyroidism indicates that thyroid hormone is essential for the development of hearing. We investigated the underlying roles of the TRalpha1 and TRbeta thyroid hormone receptors in the auditory system using receptor-deficient mice. TRalpha1 and TRbeta, which act as hormone-activated transcription factors, are encoded by the Thra and Thrb genes, respectively, and both are expressed in the developing cochlea. TRbeta is required for hearing because TRbeta-deficient (Thrb(tm1/tm1)) mice have a defective auditory-evoked brainstem response and retarded expression of a potassium current (I(K,f)) in the cochlear inner hair cells. Here, we show that although TRalpha1 is individually dispensable, TRalpha1 and TRbeta synergistically control an extended array of functions in postnatal cochlear development. Compared with Thrb(tm1/tm1) mice, the deletion of all TRs in Thra(tm1/tm1)Thrb(tm1/tm1) mice produces exacerbated and novel phenotypes, including delayed differentiation of the sensory epithelium, malformation of the tectorial membrane, impairment of electromechanical transduction in outer hair cells, and a low endocochlear potential. The induction of I(K,f) in inner hair cells was not markedly more retarded than in Thrb(tm1/tm1) mice, suggesting that this feature of hair cell maturation is primarily TRbeta-dependent. These results indicate that distinct pathways mediated by TRbeta alone or by TRbeta and TRalpha1 together facilitate control over an extended range of functions during the maturation of the cochlea.  (+info)