A processive single-headed motor: kinesin superfamily protein KIF1A. (1/5959)

A single kinesin molecule can move "processively" along a microtubule for more than 1 micrometer before detaching from it. The prevailing explanation for this processive movement is the "walking model," which envisions that each of two motor domains (heads) of the kinesin molecule binds coordinately to the microtubule. This implies that each kinesin molecule must have two heads to "walk" and that a single-headed kinesin could not move processively. Here, a motor-domain construct of KIF1A, a single-headed kinesin superfamily protein, was shown to move processively along the microtubule for more than 1 micrometer. The movement along the microtubules was stochastic and fitted a biased Brownian-movement model.  (+info)

Transport of solutes through cartilage: permeability to large molecules. (2/5959)

A review of the transport of solutes through articular cartilage is given, with special reference to the effect of variations in matrix composition. Some physiological implications of our findings are discussed. Also, results of an experimental study of the permeability of articular cartilage to large globular proteins are presented. Because of the very low partition coefficients of large solutes between cartilage and an external solution new experimental techniques had to be devised, particularly for the study of diffusion. The partition coefficients of solutes were found to decrease very steeply with increase in size, up to serum albumin. There was, however, no further decrease for IGG. The diffusion coefficient of serum albumin in cartilage was relatively high (one quarter of the value in aqueous solution). These two facts taken together suggest that there may be a very small fraction of relatively large pores in cartilage through which the transport of large molecules is taking place. The permeability of cartilage to large molecules is extremely sensitive to variations in the glycosaminoglycan content: for a threefold increase in the latter there is a hundredfold decrease in the partition coefficient. For cartilage of fixed charge density around 0-19 m-equiv/g, there is no penetration at all of globular proteins of size equal to or larger than serum albumin.  (+info)

Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly lipophilic antioxidants. (3/5959)

Oxidative stress is considered a cause or propagator of acute and chronic disorders of the central nervous system. Novel 2, 4-diamino-pyrrolo[2,3-d]pyrimidines are potent inhibitors of iron-dependent lipid peroxidation, are cytoprotective in cell culture models of oxidative injury, and are neuroprotective in brain injury and ischemia models. The selection of lead candidates from this series required that they reach target cells deep within brain tissue in efficacious amounts after oral dosing. A homologous series of 26 highly lipophilic pyrrolopyrimidines was examined using cultured cell monolayers to understand the structure-permeability relationship and to use this information to predict brain penetration and residence time. Pyrrolopyrimidines were shown to be a more permeable structural class of membrane-interactive antioxidants where transepithelial permeability was inversely related to lipophilicity or to cell partitioning. Pyrrole substitutions influence cell partitioning where bulky hydrophobic groups increased partitioning and decreased permeability and smaller hydrophobic groups and more hydrophilic groups, especially those capable of weak hydrogen bonding, decreased partitioning, and increased permeability. Transmonolayer diffusion for these membrane-interactive antioxidants was limited mostly by desorption from the receiver-side membrane into the buffer. Thus, in this case, these in vitro cell monolayer models do not adequately mimic the in vivo situation by underestimating in vivo bioavailability of highly lipophilic compounds unless acceptors, such as serum proteins, are added to the receiving buffer.  (+info)

Novel, highly lipophilic antioxidants readily diffuse across the blood-brain barrier and access intracellular sites. (4/5959)

In an accompanying article, an in vitro assay for permeability predicts that membrane-protective, antioxidant 2,4-diamino-pyrrolo[2, 3-d]pyrimidines should have improved blood-brain barrier (BBB) permeation over previously described lipophilic antioxidants. Using a first-pass extraction method and brain/plasma quantification, we show here that two of the pyrrolopyrimidines, one of which is markedly less permeable, readily partition into rat brain. The efficiency of extraction was dependent on serum protein binding, and in situ efflux confirms the in vitro data showing that PNU-87663 is retained in brain longer than PNU-89843. By exploiting inherent fluorescence properties of PNU-87663, its distribution within brain and within cells in culture was demonstrated using confocal scanning laser microscopy. PNU-87663 rapidly partitioned into the cell membrane and equilibrates with cytoplasmic compartments via passive diffusion. Although partitioning of PNU-87663 favors intracytoplasmic lipid storage droplets, the compound was readily exchangeable as shown by efflux of compound from cells to buffer when protein was present. The results demonstrated that pyrrolopyrimidines were well suited for quickly accessing target cells within the central nervous system as well as in other target tissues.  (+info)

Free energy landscapes of encounter complexes in protein-protein association. (5/5959)

We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.  (+info)

pH-dependent conformational change of gastric mucin leads to sol-gel transition. (6/5959)

We present dynamic light scattering (DLS) and hydrophobic dye-binding data in an effort to elucidate a molecular mechanism for the ability of gastric mucin to form a gel at low pH, which is crucial to the barrier function of gastric mucus. DLS measurements of dilute mucin solutions were not indicative of intermolecular association, yet there was a steady fall in the measured diffusion coefficient with decreasing pH, suggesting an apparent increase in size. Taken together with the observed rise in depolarized scattering ratio with decreasing pH, these results suggest that gastric mucin undergoes a conformational change from a random coil at pH >/= 4 to an anisotropic, extended conformation at pH < 4. The increased binding of mucin to hydrophobic fluorescent with decreasing pH indicates that the change to an extended conformation is accompanied by exposure of hydrophobic binding sites. In concentrated mucin solutions, the structure factor S(q, t) derived from DLS measurements changed from a stretched exponential decay at pH 7 to a power-law decay at pH 2, which is characteristic of a sol-gel transition. We propose that the conformational change facilitates cross-links among mucin macromolecules through hydrophobic interactions at low pH, which in turn leads to a sol-gel transition when the mucin solution is sufficiently concentrated.  (+info)

Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10). (7/5959)

A triple mutant of sperm whale myoglobin (Mb) [Leu(B10) --> Tyr, His(E7) --> Gln, and Thr(E10) --> Arg, called Mb-YQR], investigated by stopped-flow, laser photolysis, crystallography, and molecular dynamics (MD) simulations, proved to be quite unusual. Rebinding of photodissociated NO, O2, and CO from within the protein (in a "geminate" mode) allows us to reach general conclusions about dynamics and cavities in proteins. The 3D structure of oxy Mb-YQR shows that bound O2 makes two H-bonds with Tyr(B10)29 and Gln(E7)64; on deoxygenation, these two residues move toward the space occupied by O2. The bimolecular rate constant for NO binding is the same as for wild-type, but those for CO and O2 binding are reduced 10-fold. While there is no geminate recombination with O2 and CO, geminate rebinding of NO displays an unusually large and very slow component, which is pretty much abolished in the presence of xenon. These results and MD simulations suggest that the ligand migrates in the protein matrix to a major "secondary site," located beneath Tyr(B10)29 and accessible via the motion of Ile(G8)107; this site is different from the "primary site" identified by others who investigated the photolyzed state of wild-type Mb by crystallography. Our hypothesis may rationalize the O2 binding properties of Mb-YQR, and more generally to propose a mechanism of control of ligand binding and dissociation in hemeproteins based on the dynamics of side chains that may (or may not) allow access to and direct temporary sequestration of the dissociated ligand in a docking site within the protein. This interpretation suggests that very fast (picosecond) fluctuations of amino acid side chains may play a crucial role in controlling O2 delivery to tissue at a rate compatible with physiology.  (+info)

The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. (8/5959)

The reaction of molecules confined to two dimensions is of interest in cell adhesion, specifically for the reaction between cell surface receptors and substrate-bound ligand. We have developed a model to describe the overall rate of reaction of species that are bound to surfaces under relative motion, such that the Peclet number is order one or greater. The encounter rate between reactive species is calculated from solution of the two-dimensional convection-diffusion equation. The probability that each encounter will lead to binding depends on the intrinsic rate of reaction and the encounter duration. The encounter duration is obtained from the theory of first passage times. We find that the binding rate increases with relative velocity between the two surfaces, then reaches a plateau. This plateau indicates that the increase in the encounter rate is counterbalanced by the decrease in the encounter duration as the relative velocity increases. The binding rate is fully described by two dimensionless parameters, the Peclet number and the Damkohler number. We use this model to explain data from the cell adhesion literature by incorporating these rate laws into "adhesive dynamics" simulations to model the binding of a cell to a surface under flow. Leukocytes are known to display a "shear threshold effect" when binding selectin-coated surfaces under shear flow, defined as an increase in bind rate with shear; this effect, as calculated here, is due to an increase in collisions between receptor and ligand with increasing shear. The model can be used to explain other published data on the effect of wall shear rate on the binding of cells to surfaces, specifically the mild decrease in binding within a fixed area with increasing shear rate.  (+info)