Quantitative evaluation of alternative mechanisms of blood disposition of di(n-butyl) phthalate and mono(n-butyl) phthalate in rats. (1/103)

Phthalate esters are ubiquitous, low-level environmental contaminants that induce testicular toxicity in laboratory animals. The diester is rapidly metabolized in the gut to the monoester, which causes the testicular toxicity. Several physiologically based pharmacokinetic (PBPK) model structures have been evaluated for di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP). The objective of this study was to test these PBPK models for a less lipophilic phthalate diester, di(n-butyl) phthalate (DBP), and monoester, mono(n-butyl) phthalate (MBP). Alternate models describing enterohepatic circulation, diffusion-limitation, tissue pH gradients (pH trapping), and a simpler, flow-limited model were evaluated. A combined diffusion-limited and pH trapping model was also tested. MBP tissue:blood partition coefficients were similar when determined either experimentally by a nonvolatile, vial equilibration technique or algorithmically. All other parameters were obtained from the literature or estimated from MBP blood concentrations following intravenous or oral exposure to DBP or MBP. A flow-limited model was unable to predict MBP blood levels, whereas each alternative model had statistically better predictions. The combined diffusion-limited and pH trapping model was the best overall, having the highest log-likelihood function value. This result is consistent with a previous finding that the pH trapping model was the best model for describing DEHP and MEHP blood dosimetry, though it was necessary to extend the model to include diffusion-limitation. The application of the pH trapping model is a step toward developing a generic model structure for all phthalate esters, though more work is required before a generic structure can be identified with confidence. Development of a PBPK model structure applicable to all phthalate esters would support more realistic assessments of risk to human health from exposure to one or more members of this class of compounds.  (+info)

Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. (2/103)

Di(n-butyl) phthalate (DBP) is a commercially important plasticizer and ubiquitous environmental contaminant. Since previous, limited dose-response studies with DBP that reported alterations in male reproductive development and function failed to establish a NOAEL (no-observed-adverse-effect level), an extensive dose-response study was conducted. Pregnant CD rats were given DBP by gavage at 0, 0.5, 5, 50, or 100 mg/kg/day (n = 19-20) or 500 mg/kg/day (n = 11) from gestation day 12 to 21. In male offspring, anogenital distance was decreased at 500 mg DBP/kg/day. Retained areolas or nipples were present in 31 and 90% of male pups at 100 and 500 mg/kg/day, respectively. Preputial separation was not delayed by DBP treatment in males with normal external genitalia, but cleft penis (hypospadias) was observed in 5/58 rats (4/11 litters) at 500 mg/kg/day. Absent or partially developed epididymis (23/58 rats in 9/11 litters), vas deferens (16/58 animals in 9/11 litters), seminal vesicles (4/58 rats in 4/11 litters), and ventral prostate (1/58 animals) occurred at 500 mg/kg/day. In 110-day-old F(1) males, the weights of the testis, epididymis, dorsolateral and ventral prostates, seminal vesicles, and levator ani-bulbocavernosus muscle were decreased at 500 mg/kg/day. At 500 mg/kg/day, widespread seminiferous tubule degeneration was seen in 25/58 rats (in 9/11 litters), focal interstitial cell hyperplasia in 14/58 rats (in 5/11 litters), and interstitial cell adenoma in 1/58 rats (in 1/11 litters). For this 10-day prenatal (embryonic and fetal) exposure to DBP, the NOAEL and LOAEL (lowest-observed-adverse-effect level) were 50 and 100 mg/kg/day, respectively. This is currently the lowest NOAEL described for the toxicity of DBP.  (+info)

Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that produces reproductive malformations in male rats. (3/103)

Antiandrogenic chemicals alter sex differentiation by several different mechanisms. Some, like flutamide, procymidone, or vinclozolin compete with androgens for the androgen receptor (AR), inhibit AR-DNA binding, and alter androgen-dependent gene expression in vivo and in vitro. Finasteride and some phthalate esters demasculinize male rats by inhibiting fetal androgen synthesis. Linuron, which is a weak competitive inhibitor of AR binding (reported Ki of 100 microM), alters sexual differentiation in an antiandrogenic manner. However, the pattern of malformations more closely resembles that produced by the phthalate esters than by vinclozolin treatment. The present study was designed to determine if linuron acted as an AR antagonist in vitro and in vivo. In vitro, we (1) confirmed the affinity of linuron for the rat AR, and found (2) that linuron binds human AR (hAR), and (3) acts as an hAR antagonist. Linuron competed with an androgen for rat prostatic AR (EC(50) = 100-300 microM) and human AR (hAR) in a COS cell-binding assay (EC(50) = 20 microM). Linuron inhibited dihydrotestosterone (DHT)-hAR induced gene expression in CV-1 and MDA-MB-453-KB2 cells (EC(50) = 10 microM) at concentrations that were not cytotoxic. In short-term in vivo studies, linuron treatment reduced testosterone- and DHT-dependent tissue weights in the Hershberger assay (oral 100 mg/kg/d for 7 days, using castrate-immature-testosterone propionate-treated male rats; an assay used for decades to screen for AR agonists and antagonists) and altered the expression of androgen-regulated ventral prostate genes (oral 100 mg/kg/d for 4 days). Histological effects of in utero exposure to linuron (100 mg/kg/d, day 14-18) or DBP (500 mg/kg/d, day 14 to postnatal day 3) on the testes and epididymides also are shown here. Taken together, these results support the hypothesis that linuron is an AR antagonist both in vivo and in vitro, but it remains to be determined if linuron alters sexual differentiation by additional mechanisms of action.  (+info)

Migration of dermal cells expressing a macrophage C-type lectin during the sensitization phase of delayed-type hypersensitivity. (4/103)

Dermal cells expressing a macrophage C-type lectin (mMGL) were previously suggested to migrate to regional lymph nodes during the sensitization phase of delayed-type hypersensitivity (DTH). The migration seemed to be induced by the solvent used to dissolve the antigen, and the DTH response was significantly enhanced by the migration. In this study, immunohistochemical analysis of skin after epicutaneous application of one of such solvents, a mixture of acetone and dibutylphthalate (AD), revealed a transient decrease in the number of mMGL-positive cells in the dermis. A similar decrease in this cell population was also observed in an ex vivo assay with skin explants excised from AD-treated sites. Conditioned medium from organ culture of AD-treated skin induced a similar decrease of mMGL-positive cells in untreated dermis, indicating the involvement of soluble factors. mMGL-positive cells seemed to represent a unique subpopulation of F4/80-positive dermal cells.  (+info)

Involvement of cytokines in the skin-to-lymph node trafficking of cells of the monocyte-macrophage lineage expressing a C-type lectin. (5/103)

The mechanism by which dermal cells expressing a macrophage calcium-type lectin (MGL) trafficked to regional lymph nodes was investigated. Conditioned medium prepared from organ cultures of mouse skin sensitized with a mixture of acetone and dibutylphthalate was shown to decrease the number of MGL(+) cells in the dermis in ex vivo organ culture assays. In in vitro culture of sensitized skin, the loss of MGL(+) cells was abrogated by the addition to the culture medium of mAb against IL-1ss, while addition of recombinant IL-1ss to the medium in which untreated skin was cultured induced loss of MGL(+) cells. Intradermal injection of recombinant IL-1ss also resulted in a transient increase of MGL(+) cells in the T cell area of draining lymph nodes in vivo, indicating that IL-1ss is central in the entire process of MGL(+) cell trafficking to the lymph nodes. Supporting this is that cells producing IL-1ss were detected in the epidermis of cultured skin even early after sensitization. The possibility that IL-1ss simply down-regulates MGL expression was eliminated by Western blotting experiments with isolated MGL(+) cells treated with or without IL-1ss. IL-1alpha and tumor necrosis factor (TNF)-alpha were also able to induce migration of MGL(+) cells in the ex vivo assay in a manner akin to IL-1ss, and antibodies against them abrogated this. Isolated MGL(+) cells from skin cultured in type I collagen matrix in vitro displayed morphological changes upon exposure to IL-1ss, IL-1alpha or TNF-alpha, indicating that these cytokines exert a direct effect on these cells. Thus, pro-inflammatory cytokines, particularly IL-1ss, are produced at the site of skin sensitization and are involved in at least initiating the trafficking of cells expressing MGL to the lymph nodes.  (+info)

Effects of dibutyl phthalate as an environmental endocrine disruptor on gonadal sex differentiation of genetic males of the frog Rana rugosa. (6/103)

To examine the effects of dibutyl phthalate (DBP) on gonadal sex differentiation, genetically male tadpoles of Rana rugosa were exposed to dilute solutions of DBP at concentrations of 0.1, 1, or 10 microM during days 19-23 after fertilization, which is the critical period of gonadal sex differentiation in R. rugosa. Tadpoles were necropsied on day 40. The genetically male tadpoles were produced from crossings between males (ZZ) of one local population, in which females are the heterogametic sex, and females (XX) of another local population, in which males are the heterogametic sex. As positive control groups, tadpoles were exposed to dilute solutions of 17beta-estradiol (E(2)) at concentrations of 0. 01, 0.1, or 1 microM during the same period. The internal structure of the gonads was histologically examined in a total of 30 control tadpoles, 86 E(2)-treated tadpoles, and 90 DBP-treated tadpoles. The gonads of the control tadpoles all showed the typical structure of testes. In contrast, 0.01, 0.1, and 1 microM E(2) treatments caused the undifferentiated gonads of 18, 63, and 100% of the tadpoles, respectively, to develop into gonads of complete or partial ovarian structure. After 0.1, 1, and 10 microM DBP treatment, 0, 7, and 17% of tadpoles, respectively, were similarly affected. These findings suggest that DBP was about 1,000-fold less potent than E(2). Nevertheless, DBP is an environmentally dangerous hormone that disrupts the pathways of testicular differentiation in genetically male animals.  (+info)

Effects of peroxisome proliferators on antioxidant enzymes and antioxidant vitamins in rats and hamsters. (7/103)

Peroxisome proliferators (PPs) cause hepatomegaly, peroxisome proliferation, and hepatocarcinogenesis in rats and mice, whereas hamsters are less responsive to PPs. PPs increase the activities of enzymes involved in peroxisomal beta-oxidation and omega-hydroxylation of fatty acids, which has been hypothesized to result in oxidative stress. The hypothesis of this study was that differential modulation of antioxidant enzymes and vitamins might account for differences in species susceptibility to PPs. Accordingly, we measured the activities of DT-diaphorase and superoxide dismutase (SOD) and the hepatic content of ascorbic acid and alpha-tocopherol in male Sprague-Dawley rats and Syrian hamsters fed 2 doses of 3 known peroxisome proliferators (dibutyl phthalate [DBP], gemfibrozil, and [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14,643) for 6, 34, or 90 days. In untreated animals, the activity of DT-diaphorase was much higher in hamsters than in rats, but the control levels of SOD, ascorbic acid and alpha-tocopherol were similar. In rats and hamsters treated with Wy-14,643, we observed decreases in alpha-tocopherol content and total SOD activity. DT-diaphorase was decreased in activity following Wy-14,643 treatment in rats at all time points and doses, but only sporadically affected in hamsters. Rats and hamsters treated with DBP demonstrated increased SOD activity at 6 days; however, in the rat, DBP decreased SOD activity at 90 days and alpha-tocopherol content was decreased throughout. In gemfibrozil treated rats and hamsters, a decrease in alpha-tocopherol content and an increase in DT-diaphorase activity were observed. In either species, no consistent trend was observed in total ascorbic acid content after treatment with any of the PPs. In conclusion, these data suggest that both rats and hamsters are compromised in antioxidant capabilities following PP treatment and additional hypotheses for species susceptibility should be considered.  (+info)

Differential activation of hepatic NF-kappaB in rats and hamsters by the peroxisome proliferators Wy-14,643, gemfibrozil, and dibutyl phthalate. (8/103)

Nuclear factor-kappaB (NF-kappaB) is an oxidative stress-activated transcription factor involved in the regulation of cell proliferation and apoptosis. We found previously that the peroxisome proliferator ciprofibrate activates NF-kappaB in the livers of rats and mice. These species are sensitive to the hepatocarcinogenic effects of peroxisome proliferators, whereas other species such as Syrian hamsters are not. In the present study we examined the effects of 3 different peroxisome proliferators on NF-kappaB activation in rats and Syrian hamsters. The peroxisome proliferators Wy-14,643, gemfibrozil, and dibutyl phthalate were administered to animals for 6, 34, or 90 days. NF-kappaB activity was determined using electrophoretic mobility-shift assays and confirmed using supershift assays. Wy-14,643 increased the DNA binding activity of NF-kappaB at all 3 time points in rats and produced the highest activation of the 3 chemicals tested. Gemfibrozil and dibutyl phthalate increased NF-kappaB activation to a lesser extent in rats and not at all times. There were no differences in hepatic NF-kappaB levels between control hamsters and hamsters treated with any of the peroxisome proliferators. This study demonstrates species-specific differences in hepatic NF-kappaB activation by peroxisome proliferators.  (+info)