M2 receptors in genito-urinary smooth muscle pathology. (1/405)

In vitro bladder contractions in response to cumulative carbachol doses were measured in the presence of selective muscarinic antagonists from rats which had their major pelvic ganglion bilaterally removed (denervation, DEN) or from rats in which the spinal cord was injured (SCI) via compression. DEN induced both hypertrophy (505+/-51 mg bladder weight) and a supersensitivity of the bladders to carbachol (EC50=0.7+/-0.1 uM). Some of the SCI rats regained the ability to void spontaneously (SPV). The bladders of these animals weighed 184+/-17 mg, significantly less than the bladders of non voiding rats (NV, 644+/-92 mg). The potency of carbachol was greater in bladder strips from NV SCI animals (EC50=0.54+/-0.1 uM) than either bladder strips from SPV SCI (EC50=0.93+/-0.3 microM), DEN or control (EC50=1.2+/-0.1 microM) animals. Antagonist affinities in control bladders for antagonism of carbachol induced contractions were consistent with M3 mediated contractions. Antagonist affinities in DEN bladders for 4-diphenlacetoxy-N-methylpiperidine methiodide (4-DAMP, 8.5) and para fluoro hexahydrosilodifenidol (p-F-HHSiD, 6.6); were consistent with M2 mediated contractions, although the methoctramine affinity (6.5) was consistent with M3 mediated contractions. p-F-HHSiD inhibited carbachol induced contraction with an affinity consistent with M2 receptors in bladders from NV SCI (pKb=6.4) animals and M3 receptors in bladders from SPV SCI animals (pKb=7.9). Subtype selective immunoprecipitation of muscarinic receptors revealed an increase in total and an increase in M2 receptor density with no change in M3 receptor density in bladders from DEN and NV SCI animals compared to normal or sham operated controls. M3 receptor density was lower in bladders from SPV SCI animals while the M2 receptor density was not different from control. This increase in M2 receptor density is consistent with the change in affinity of the antagonists for inhibition of carbachol induced contractions and may indicate that M2 receptors or a combination of M2 and M3 receptors directly mediate smooth muscle contraction in bladders from DEN and NV SCI rats.  (+info)

Inducing effect of diamines on transcription of the cephamycin C genes from the lat and pcbAB promoters in Nocardia lactamdurans. (2/405)

The diamines putrescine, cadaverine, and diaminopropane stimulate cephamycin biosynthesis in Nocardia lactamdurans, in shake flasks and fermentors, without altering cell growth. Intracellular levels of the P7 protein (a component of the methoxylation system involved in cephamycin biosynthesis) were increased by diaminopropane, as shown by immunoblotting studies. Lysine-6-aminotransferase and piperideine-6-carboxylate dehydrogenase activities involved in biosynthesis of the alpha-aminoadipic acid precursor were also greatly stimulated. The diamine stimulatory effect is exerted at the transcriptional level, as shown by low-resolution S1 protection studies. The transcript corresponding to the pcbAB gene and to a lesser extent also the lat transcript were significantly increased in diaminopropane-supplemented cultures, whereas transcription from the cefD promoter was not affected. Coupling of the lat and pcbAB promoters to the reporter xylE gene showed that expression from the lat and pcbAB promoters was increased by addition of diaminopropane in Streptomyces lividans. Intracellular accumulation of diamines in Nocardia may be a signal to trigger antibiotic production.  (+info)

Subtypes of muscarinic receptors regulating gallbladder cholinergic contractions. (3/405)

The aim of this study was to determine the functional role of muscarinic receptor subtypes regulating gallbladder cholinergic contractions. Electrical field stimulation (EFS; 16 Hz) produced contractile responses of guinea pig gallbladder muscle strips in vitro that were inhibited by 1 microM tetrodotoxin (2 +/- 2% of control) and 1 microM atropine (1 +/- 1% of control), indicating activation of intrinsic cholinergic nerves. Exogenous ACh (5 microM)-induced contractions were inhibited by atropine (1 +/- 1% of control) but not tetrodotoxin (102 +/- 1% of control), indicating a direct effect on smooth muscle. The M1 receptor antagonist pirenzepine (10 nM) had no effect on ACh-induced contractions but inhibited EFS-induced contractions by 11 +/- 3%. The M2 antagonist methoctramine (10 nM) had no effect on ACh-induced contractions but augmented EFS-induced contractions by 5 +/- 2%. The M3 antagonist 4-DAMP (10 nM) inhibited ACh-induced contractions by 14 +/- 4% and EFS-induced contractions by 22 +/- 5%. In conclusion, specific M1, M2, and M3 receptors modulate gallbladder muscle contractions by regulating ACh release from cholinergic nerves and mediating the contraction. Cholinergic contractions are mediated by M3 receptors directly on the smooth muscle. M2 receptors are on cholinergic nerves and function as prejunctional inhibitory autoreceptors. M1 receptors are on cholinergic nerves and function as prejunctional facilitatory autoreceptors.  (+info)

Antigen-induced hyperreactivity to histamine: role of the vagus nerves and eosinophils. (4/405)

M2 muscarinic receptors limit acetylcholine release from the pulmonary parasympathetic nerves. M2 receptors are dysfunctional in antigen-challenged guinea pigs, causing increased vagally mediated bronchoconstriction. Dysfunction of these M2 receptors is due to eosinophil major basic protein, which is an antagonist for M2 receptors. Histamine-induced bronchoconstriction is composed of a vagal reflex in addition to its direct effect on airway smooth muscle. Because hyperreactivity to histamine is seen in antigen-challenged animals, we hypothesized that hyperreactivity to histamine may be due to increased vagally mediated bronchoconstriction caused by dysfunction of M2 receptors. In anesthetized, antigen-challenged guinea pigs, histamine-induced bronchoconstriction was greater than that in control guinea pigs. After vagotomy or atropine treatment, the response to histamine in antigen-challenged animals was the same as that in control animals. In antigen-challenged animals, blockade of eosinophil influx into the airways or neutralization of eosinophil major basic protein prevented the development of hyperreactivity to histamine. Thus hyperreactivity to histamine in antigen-challenged guinea pigs is vagally mediated and dependent on eosinophil major basic protein.  (+info)

Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis. (5/405)

Overexpression of the BltD gene in Bacillus subtilis causes acetylation of the polyamines spermidine and spermine. BltD is co-regulated with another gene, Blt, which encodes a multidrug export protein whose overexpression facilitates spermidine export [Woolridge, Vazquez-Laslop, Markham, Chevalier, Gerner and Neyfakh (1997) J. Biol. Chem. 272, 8864-8866]. Here we show that BltD acetylates both spermidine and spermine at primary propyl amine moieties, with spermine being the preferred substrate. In the presence of saturating concentrations of acetyl CoA, BltD rapidly acetylates spermine at both the N1 and N12 positions. The Km (app) values for spermine, spermidine and N1-acetylspermine are +info)

Inhibition of GTPase activity of Gi proteins and decreased agonist affinity at M2 muscarinic acetylcholine receptors by spermine and methoctramine. (6/405)

1. The effects of spermine and methoctramine, a selective M2 muscarinic receptor antagonist, were studied on the high-affinity GTPase activity of G proteins, and on ligand binding to M2 muscarinic receptors in pig heart sarcolemma. 2. The spontaneous GTP hydrolysis by pig heart sarcolemma and its stimulation by mastoparan or carbachol were prevented by pertussis toxin and inhibited by methoctramine (IC50s: 21, 13 and 0.005 microM, respectively), and spermine (IC50s: 967, 278 and 11 microM). Spermine and methoctramine also inhibited spontaneous GTP hydrolysis by rat peritoneal mast cell membranes which do not respond to carbachol. 3. The neutral muscarinic antagonists, AF-DX 116 and atropine, did not modify the inhibitory effect of high concentrations of methoctramine, indicating that this effect was not related to the antagonist binding site of muscarinic receptors. We suggest that methoctramine behaves as a receptor antagonist at nanomolar concentrations and interacts with G proteins at micromolar concentrations. 4. Spermine did not modify the binding of the tritiated muscarinic antagonist [3H]-NMS, but decreased the binding of the agonist [3H]-Oxo-M. Spermine elicited a rightward shift of the carbachol/[3H]-NMS binding isotherm with a decrease in the proportion of sites with high-affinity for carbachol, suggesting that polyamines uncouple Gi proteins from receptors. 5. The inhibition of GTPase activity by polyamines, preventing the re-association of alpha and betagamma subunits of Gi proteins, might sustain the regulatory effect of Gi subunits on downstream effectors. The level of intracellular polyamines might be important for the control of the transduction of extracellular signals through Gi protein-coupled receptors.  (+info)

Inhibitory effects of 1,3-diaminopropane, an ornithine decarboxylase inhibitor, on rat two-stage urinary bladder carcinogenesis initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine. (7/405)

Overexpression of ornithine decarboxylase (ODC) has been shown to be characteristic of tumor development and progression in humans and experimental animals. Therefore, we have examined the effects of 1, 3-diaminopropane dihydrochloride (DAP), a potent inhibitor of ODC, on rat two-stage urinary bladder carcinogenesis initiated with N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). In experiment 1 (36 weeks), 6-week-old F344 male rats were administered 0.05% BBN in drinking water for 4 weeks and then divided into four groups. Animals of groups 1 and 2 received basal diet and drinking water supplemented with or without DAP (2 g/l). Groups 3 and 4 were given diet containing 5% sodium L-ascorbate (NaAsA), a typical urinary bladder tumor promoter, and drinking water with or without DAP. Administration of DAP to group 1 significantly reduced tumor size, multiplicity and incidence, particularly of papillomas, when compared with group 2 values. DAP together with NaAsA (group 3) also decreased tumor size relative to the group 4 case. To determine the effects of DAP on the early stages of bladder carcinogenesis and its mechanisms, a similar protocol was conducted (experiment 2) with death after 20 weeks. DAP treatment caused complete inhibition (0% incidence) of papillary and/or nodular hyperplasia in group 1 but was without influence in group 3, as compared with the respective controls. Moreover, the ODC activity, bromodeoxyuridine labeling indices and mRNA expression levels of cyclin D1 in the urinary bladder mucosa, determined by northern blotting, were markedly lower in group 1 than in group 2, but values were comparable for both groups administered NaAsA. Assessment of mRNA expression levels of the angiogenic vascular endothelial growth factor suggested no involvement in the inhibitory effects of DAP on urinary bladder carcinogenesis. The results indicate that inhibition of ODC could reduce urinary bladder carcinogenesis in rats, particularly in the early stages, through antiproliferative mechanisms.  (+info)

Molecular mode of interaction of plant amine oxidase with the mechanism-based inhibitor 2-butyne-1,4-diamine. (8/405)

2-Butyne-1,4-diamine (DABI) is a mechanism-based inhibitor of copper-containing plant amine oxidases; the number of turnovers that leads to enzyme inactivation is approximately 20. The product of DABI oxidation is a very reactive aminoallene that reacts with an essential nucleophilic group at the enzyme active site, forming a covalently bound pyrrole and producing an inactive enzyme. The inactivated enzyme shows a new absorption maximum at 295 nm and gives coloured derivatives with p-dimethylaminobenzaldehyde and p-dimethylaminocinnamaldehyde that are spectrally similar to the products of pyrrole treated with the above reagents. Resonance Raman spectra of the p-dimethylaminobenzaldehyde adduct of pyrrole and the inactivated enzyme show very high degree of similarity, supporting the idea that the product of inactivation is indeed a bound pyrrole. The bound pyrrole is formed already in the anaerobic step of the reaction, while the topa semiquinone radical is not affected, as shown by the EPR and stopped-flow absorption measurements. Peptides containing the DABI binding site were obtained by proteolysis of inactivated enzyme, isolated by HPLC and analysed by amino acid sequencing and MS. The crystal structure of the amine oxidase from pea has been determined; inhibition is caused mainly by the highly reactive DABI product, 4-amino-2-butynal, binding to a nucleophilic residue at the entrance to the substrate channel. As other DABI labelled peptides were also found and no free DABI product was detected by MS after complete inhibition of the enzyme, it is likely that the DABI product binds also to other solvent exposed nucleophilic residues on the enzyme surface.  (+info)