Deuterium solid-state NMR investigations of exchange labeled oriented purple membranes at different hydration levels. (1/418)

Oriented purple membranes were equilibrated under controlled (2)H(2)O relative humidity ranging from 15% to 93% and introduced into the magnetic field of an NMR spectrometer with the membrane normal parallel to the magnetic field direction. Deuterium solid-state NMR spectra of these samples resolved four deuteron populations. Deuterons that have exchanged with amide protons of the protein exhibited a broad spectral line shape (<150 kHz). Furthermore, a broadened signal of deuterons tightly associated with protein and lipid is detected at low hydration, as well as two additional water populations that were present when the samples were equilibrated at >/=75% relative humidity. These latter ones are characterized by narrow quadrupolar splittings (<2.5 kHz) and orientation-dependent chemical shifts. Their deuterium relaxation times, measured as a function of temperature, indicate correlation times in the fast regime (10(-10) s) and activation energies of 13 kJ/mol (at 86% relative humidity). Differences in T(1) and T(2) relaxation together with small residual quadrupole splittings show that the mobility of the deuterons is anisotropic. The occurrence of these mobile water populations at high levels of purple membrane hydration (>/=75% relative humidity) correlate with proton pumping activity of bacteriorhodopsin, the fast kinetics of M-decay in the bacteriorhodopsin photocycle, and structural alterations of the protein during the M-state, which have been described previously.  (+info)

Structurally homologous all beta-barrel proteins adopt different mechanisms of folding. (2/418)

Acidic fibroblast growth factors from human (hFGF-1) and newt (nFGF-1) (Notopthalamus viridescens) are 16-kDa, all beta-sheet proteins with nearly identical three-dimensional structures. Guanidine hydrochloride (GdnHCl)-induced unfolding of hFGF-1 and nFGF-1 monitored by fluorescence and far-UV circular dichroism (CD) shows that the FGF-1 isoforms differ significantly in their thermodynamic stabilities. GdnHCl-induced unfolding of nFGF-1 follows a two-state (Native state to Denatured state(s)) mechanism without detectable intermediate(s). By contrast, unfolding of hFGF-1 monitored by fluorescence, far-UV circular dichroism, size-exclusion chromatography, and NMR spectroscopy shows that the unfolding process is noncooperative and proceeds with the accumulation of stable intermediate(s) at 0.96 M GdnHCl. The intermediate (in hFGF-1) populated maximally at 0.96 M GdnHCl has molten globule-like properties and shows strong binding affinity to the hydrophobic dye, 1-Anilino-8-naphthalene sulfonate (ANS). Refolding kinetics of hFGF-1 and nFGF-1 monitored by stopped-flow fluorescence reveal that hFGF-1 and nFGF-1 adopts different folding mechanisms. The observed differences in the folding/unfolding mechanisms of nFGF-1 and hFGF-1 are proposed to be either due to differential stabilizing effects of the charged denaturant (Gdn(+) Cl(-)) on the intermediate state(s) and/or due to differences in the structural interactions stabilizing the native conformation(s) of the FGF-1 isoforms.  (+info)

Folding subdomains of thioredoxin characterized by native-state hydrogen exchange. (3/418)

Native-state hydrogen exchange (HX) studies, used in conjunction with NMR spectroscopy, have been carried out on Escherichia coli thioredoxin (Trx) for characterizing two folding subdomains of the protein. The backbone amide protons of only the slowest-exchanging 24 amino acid residues, of a total of 108 amino acid residues, could be followed at pH 7. The free energy of the opening event that results in an amide hydrogen exchanging with solvent (DeltaG(op)) was determined at each of the 24 amide hydrogen sites. The values of DeltaG(op) for the amide hydrogens belonging to residues in the helices alpha(1), alpha(2), and alpha(4) are consistent with them exchanging with the solvent only when the fully unfolded state is sampled transiently under native conditions. The denaturant-dependences of the values of DeltaG(op) provide very little evidence that the protein samples partially unfolded forms, lower in energy than the unfolded state. The amide hydrogens belonging to the residues in the beta strands, which form the core of the protein, appear to have higher values of DeltaG(op) than amide hydrogens belonging to residues in the helices, suggesting that they might be more stable to exchange. This apparently higher stability to HX of the beta strands might be either because they exchange out their amide hydrogens in a high energy intermediate preceding the globally unfolded state, or, more likely, because they form residual structure in the globally unfolded state. In either case, the central beta strands-beta(3,) beta(2), and beta(4)-would appear to form a cooperatively folding subunit of the protein. The native-state HX methodology has made it possible to characterize the free energy landscape that Trx can sample under equilibrium native conditions.  (+info)

Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. (4/418)

An automated approach for the rapid analysis of protein structure has been developed and used to study acid-induced conformational changes in human growth hormone. The labeling approach involves hydrogen/deuterium exchange (H/D-Ex) of protein backbone amide hydrogens with rapid and sensitive detection by mass spectrometry (MS). Briefly, the protein is incubated for defined intervals in a deuterated environment. After rapid quenching of the exchange reaction, the partially deuterated protein is enzymatically digested and the resulting peptide fragments are analyzed by liquid chromatography mass spectrometry (LC-MS). The deuterium buildup curve measured for each fragment yields an average amide exchange rate that reflects the environment of the peptide in the intact protein. Additional analyses allow mapping of the free energy of folding on localized segments along the protein sequence affording unique dynamic and structural information. While amide H/D-Ex coupled with MS is recognized as a powerful technique for studying protein structure and protein-ligand interactions, it has remained a labor-intensive task. The improvements in the amide H/D-Ex methodology described here include solid phase proteolysis, automated liquid handling and sample preparation, and integrated data reduction software that together improve sequence coverage and resolution, while achieving a sample throughput nearly 10-fold higher than the commonly used manual methods.  (+info)

Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange. (5/418)

Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37 degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock promoters. The correlated exchange is shown to constitute a reversible unfolding with a half-life of about 30 min due to a temperature-dependent decrease in stabilization energy. We propose that this gradual decrease in stabilization energy of domain sigma 2 with increasing temperatures facilitates the unfolding of sigma 32 by the AAA+ protease FtsH thereby decreasing its half-life. Taken together our data show that the sigma 2 domain of sigma 32 can act as a thermosensor, which might be important for the heat shock regulation.  (+info)

Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. (6/418)

Heteronuclear NMR relaxation measurements and hydrogen exchange data have been used to characterize protein dynamics in the presence or absence of stabilizing solutes from hyperthermophiles. Rubredoxin from Desulfovibrio gigas was selected as a model protein and the effect of diglycerol phosphate on its dynamic behaviour was studied. The presence of 100 mM diglycerol phosphate induces a fourfold increase in the half-life for thermal denaturation of D. gigas rubredoxin. A model-free analysis of the protein backbone relaxation parameters shows an average increase of generalized order parameters of 0.015 reflecting a small overall reduction in mobility of fast-scale motions. Hydrogen exchange data acquired over a temperature span of 20 degrees C yielded thermodynamic parameters for the structural opening reactions that allow for the exchange. This shows that the closed form of the protein is stabilized by an additional 1.6 kJ x mol(-1) in the presence of the solute. The results seem to indicate that the stabilizing effect is due mainly to a reduction in mobility of the slower, larger-scale motions within the protein structure with an associated increase in the enthalpy of interactions.  (+info)

Solvent and primary deuterium isotope effects show that lactate CH and OH bond cleavages are concerted in Y254F flavocytochrome b2, consistent with a hydride transfer mechanism. (7/418)

Yeast flavocytochrome b(2) catalyzes the oxidation of lactate to pyruvate; because of the wealth of structural and mechanistic information available, this enzyme has served as the model for the family of flavoproteins catalyzing oxidation of alpha-hydroxy acids. Primary deuterium and solvent isotope effects have now been used to analyze the effects of mutating the active site residue Tyr254 to phenylalanine. Both the V(max) and the V/K(lactate) values decrease about 40-fold in the mutant enzyme. The primary deuterium isotope effects on the V(max) and the V/K(lactate) values increase to 5.0, equivalent to the intrinsic isotope effect for the wild-type enzyme. In addition, both the V(max) and the V/K(lactate) values exhibit solvent isotope effects of 1.5. Measurement of the solvent isotope effect with deuterated lactate establishes that the primary and solvent isotope effects arise from the same chemical step, consistent with concerted cleavage of the lactate OH and CH bonds. The pH dependence of the mutant enzyme is not significantly different from that of the wild-type enzyme; this is most consistent with a requirement that the side chain of Tyr254 be uncharged for catalysis. The results support a hydride transfer mechanism for the mutant protein and, by extension, wild-type flavocytochrome b(2) and the other flavoproteins catalyzing oxidation of alpha-hydroxy acids.  (+info)

Uncoupled forms of tyrosine hydroxylase unmask kinetic isotope effects on chemical steps. (8/418)

Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to dihydroxyphenylalanine. In the proposed mechanism, a ferryl-oxo species attacks the aromatic ring of tyrosine, forming a cationic intermediate. However, no significant isotope effect is found for wild-type TyrH when 3,5-2H2-tyrosine is used as a substrate. The isotope effect has now been determined with 3,5-2H2-tyrosine using mutant forms of TyrH in which the oxidation of the pterin is uncoupled from hydroxylation of the amino acid. Three mutant enzymes exhibit significant inverse deuterium isotope effects and inverse solvent isotope effects. A proton inventory for the E326A enzyme is consistent with a normal solvent isotope effect of 2.4 on an unproductive step. The results support the proposed mechanism and demonstrate the utility of using mutant proteins with branched pathways to reveal isotope effects which are masked in the wild-type enzyme.  (+info)