Suppression of experimental abdominal aortic aneurysms by systemic treatment with a hydroxamate-based matrix metalloproteinase inhibitor (RS 132908). (1/76)

BACKGROUND: Abdominal aortic aneurysms (AAAs) are associated with chronic inflammation, disruption of medial elastin, and increased local production of elastolytic matrix metalloproteinases (MMPs). The purpose of this study was to investigate how treatment with a hydroxamate-based MMP antagonist (RS 132908) might affect the development of experimental AAAs. METHODS: Male Wistar rats underwent intraluminal perfusion of the abdominal aorta with 50 units of porcine pancreatic elastase followed by treatment for 14 days with RS 132908 (100 mg/kg/day subcutaneously; n = 8) or with vehicle alone (n = 6). The external aortic diameter (AD) was measured in millimeters before elastase perfusion and at death, with AAA defined as an increase in AD (DeltaAD) of at least 100%. Aortic wall elastin and collagen concentrations were measured with assays for desmosine and hydroxyproline, and fixed aortic tissues were examined by light microscopy. RESULTS: AAAs developed in all vehicle-treated rats, with a mean AD (+/- SE) that increased from 1.60 +/- 0.03 mm before perfusion to 5.98 +/- 1.02 mm on day 14 (DeltaAD = 276.4 +/- 67.7%). AAAs developed in only five of eight animals (62.5%) after MMP inhibition, with a mean AD that increased from 1.56 +/- 0.05 mm to 3.59 +/- 0.34 mm (DeltaAD = 128.1 +/- 18.7%; P <.05, vs vehicle). The overall inhibition of aortic dilatation attributable to RS 132908 was 53.6 +/- 6.8%. Aortic wall desmosine fell by 85.4% in the vehicle-treated rats (1210.6 +/- 87.8 pmol/sample to 176.7 +/- 33.4 pmol/sample; P <.05) but only by 65.6% in the animals treated with RS 312908 (416.2 +/- 120.5 pmol/sample). In contrast, hydroxyproline was not significantly affected by either elastase perfusion or drug treatment. Microscopic examination revealed the preservation of pericellular elastin and a greater degree of fibrocollagenous wall thickening after MMP inhibition, with no detectable difference in the extent of inflammation. CONCLUSIONS: Systemic MMP inhibition suppresses aneurysmal dilatation in the elastase-induced rodent model of AAA. Consistent with its direct inhibitory effect on various MMPs, RS 132908 promotes the preservation of aortic elastin and appears to enhance a profibrotic response within the aortic wall. Hydroxamate-based MMP antagonists may therefore be useful in the development of pharmacologic approaches to the suppression of AAAs.  (+info)

The smooth muscle cell. III. Elastin synthesis in arterial smooth muscle cell culture. (2/76)

Primate arterial smooth muscle cells and skin fibroblasts were examined for their ability to synthesize elastin in culture. In the presence of the lathyrogen beta-aminopropionitrile, the smooth muscle cells incorporate [3H]lysine into a lysyl oxidase substrate that was present in the medium and associated with the cell layer. A component having a mol wt of 72,000 and an electrophoretic mobility similar to that of authentic tropoelastin was isolated from the labeled smooth muscle cells by coacervation and fractionation with organic solvents. In the absence of beta-aminopropionitrile, long-term cultures of smooth muscle cells incorporated [14C]lysine into desmosine and isodesmosine, the cross-link amino acids unique to elastin. In contrast, no desmosine formation occurred in the fibroblast cultures. These characteristics demonstrate that arterial smooth muscle cells are capable of synthesizing both soluble and cross-lined elastin in culture.  (+info)

Characterization of an in vitro model of elastic fiber assembly. (3/76)

Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.  (+info)

MEKC of desmosine and isodesmosine in urine of chronic destructive lung disease patients. (4/76)

Degradation of extracellular matrix components is central to many pathological features of chronic destructive lung disorders. Desmosine and isodesmosine are elastin-derived cross-linked amino acids whose urine levels are considered representative of elastin breakdown. The aim of this study was to apply a novel methodology, based on high-performance capillary electrophoresis, to the quantification of desmosine and isodesmosine in 11 patients with stable chronic obstructive pulmonary disease (COPD), 10 with an exacerbation of COPD, nine with alpha1-antitrypsin deficiency, 13 with bronchiectasis, and 11 adults with cystic fibrosis, in comparison to 24 controls. It was found that, in patients with stable COPD, urinary desmosine levels were higher than in controls (p=0.03), but lower than in COPD subjects with an exacerbation (p< or =0.05). The highest desmosine levels were found in subjects with alpha1-antitrypsin deficiency, bronchiectasis and cystic fibrosis (p<0.001 versus stable COPD). In a short-term longitudinal study, five stable COPD patients showed a constant rate of desmosine excretion (mean coefficient of variation <8% over three consecutive days). In conclusion, the present method is simple and suitable for the determination of elastin-derived cross-linked amino acid excretion in urine, giving results similar to those obtained using other separation methods. In addition, evidence is presented that urinary desmosine excretion is increased in conditions characterized by airway inflammation, such as exacerbations of chronic obstructive pulmonary disease, bronchiectasis and cystic fibrosis. Results obtained in subjects with alphal-antitrypsin deficiency suggest that this method might be used to evaluate the putative efficacy of replacement therapy.  (+info)

Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. (5/76)

Increased expression of matrix metalloproteinases, particularly gelatinase B (MMP-9), has been described in the lungs in pulmonary fibrosis. Intratracheal bleomycin is often used experimentally to produce lesions resembling human fibrosing alveolitis. To assess the role of gelatinase B in bleomycin-induced fibrosing alveolitis, we instilled bleomycin intratracheally into gelatinase B-deficient mice and gelatinase B+/+ littermates. Twenty-one days after bleomycin the two groups of mice were indistinguishable in terms of pulmonary histology and total lung collagen and elastin. However, the lungs of gelatinase B-deficient mice showed minimal alveolar bronchiolization, whereas bronchiolization was prominent in the lungs of gelatinase B+/+ mice. Gelatinase B was identified immunohistochemically in terminal bronchiolar cells and bronchiolized cells 7 and 14 days after bleomycin in gelatinase B+/+ mice, and whole lung gelatinase B mRNA was increased at the same times. Many bronchiolized cells displayed Clara cell features by electron microscopy. Some bronchiolized cells stained with antibody to helix transcription factor 4, a factor associated with the ciliated cell phenotype. Thus, fibrosing alveolitis develops after intratracheal bleomycin irrespective of gelatinase B. However, gelatinase B is required for alveolar bronchiolization, perhaps by facilitating migration of Clara cells and other bronchiolar cells into the regions of alveolar injury.  (+info)

Aortic wall mechanics and composition in a transgenic mouse model of Marfan syndrome. (6/76)

In Marfan syndrome, mutations of the fibrillin gene (FBN1) lead to aneurysm of the thoracic aorta, making the aortic wall more susceptible to dissection, but the precise sequence of events underlying aneurysm formation is unknown. We used a rodent model of Marfan syndrome, the mgR/mgR mouse (with mgR: hypomorphic FBN1 mutation), which underexpresses FBN1, to distinguish between a defect in the early formation of elastic fibers and the later disruption of elastic fibers. The content of desmosine plus isodesmosine was used as an index of early elastogenesis; disruption of elastic fibers was analyzed by histomorphometry. Because disruption of the medial elastic fibers may produce aortic stiffening, so amplifying the aneurysmal process, we measured thoracoabdominal pulse wave velocity as an indicator of aortic wall stiffness. Both mgR/mgR and wild-type (C57BL/6J-129SV) strains were normotensive, and wall stress was not significantly modified because the increase in internal diameter (0.80+/-0.06 vs 0.63+/-0.03 mm in wild type, P<0.05) was accompanied by increased medial cross-sectional area. The aortic wall stiffened (4-fold increase in the elastic modulus-to-wall stress ratio). Desmosine content was not modified (mgR/mgR 432+/-31 vs wild type 492+/-42 microg/mg wet weight, P>0.05). Elastic fibers showed severe fragmentation: the percentage of the media occupied by elastic fibers was 18+/-3% in mgR/mgR mice vs 30+/-1% in wild-type mice, with the number of elastic segments being 1.9+/-0.2 vs 1.4+/-0.1x10(-6)/mm(2) in the wild type (both P<0.05). In conclusion, underexpression of FBN1 in mice leads to severe elastic network fragmentation but no change in cross-linking, together with aortic dilatation. This result suggests that fragmentation of the medial elastic network and not a defect in early elastogenesis is 1 of the determinants of aortic dilatation in Marfan syndrome.  (+info)

Different pattern of collagen cross-links in two sclerotic skin diseases: lipodermatosclerosis and circumscribed scleroderma. (7/76)

Changes in the process of cross-linking of collagen molecules are associated with defects in the biomechanical stability of the extracellular matrix. Fibrosis of skin is characterized by an increase in pyridinolines, which are hydroxylysine aldehyde derived cross-links usually absent in healthy skin. In this study, we analyzed cross-links in lipodermatosclerosis and localized scleroderma to address the question whether all the mature cross-links currently characterized are increased in fibrosis in addition to the increase in pyridinolines. As psoralen plus ultraviolet A treatment leads to clinical improvement of fibrotic plaques in localized scleroderma we analyzed the cross-link content in lesional skin after bath psoralen plus ultraviolet A therapy. In skin from patients with localized scleroderma an increase in the total number of mature cross-links was found to be due to an increase in both pyridinolines and dehydro-histidinohydroxymerodesmosine. The concentration of histidinohydroxylysinonorleucine was unchanged. By contrast, the total number of mature cross-links was decreased in lipodermatosclerosis. This decrease was caused by a decrease of lysine aldehyde derived cross-links (dehydro-histidinohydroxymerodesmosine and histidinohydroxylysinonorleucine), whereas the concentration of pyridinolines increased. A decrease in the content of pyridinolines after bath psoralen plus ultraviolet A treatment was found in six out of nine patients with localized scleroderma, which might reflect a remodeling of the extracellular matrix. Our data provide evidence that sclerosis of skin is associated with either an increase in the number of cross-links per molecule of collagen or a change in the molecular nature of the cross-links formed.  (+info)

Maternal and postnatal vitamin D ingestion influences rat aortic structure, function and elastin content. (8/76)

OBJECTIVES: Subtle impairment of fetal nutrition appears to predict hypertension and atherosclerosis in adults. It has been hypothesised that impaired aortic elastogenesis is the initiating step in adult hypertension and aortic aneurysms. Vitamin D has been shown to inhibit elastin synthesis by cultured smooth muscle cells. Here we have investigated, in rats, the hypothesis that increased exposure to vitamin D during gestation and in the postnatal period alters aortic elastin content and aortic function. METHODS: Nine breeding pairs of Sprague-Dawley rats were allocated to one of three diets containing 3000 (control group), 6000 (low dose) or 12,000 (high dose) IU/kg vitamin D during pregnancy and lactation. Male pups were continued on the same diet until 6 weeks of age. Aortic elastin content was assessed by measuring desmosine+isodesmosine content using capillary zone electrophoresis. Transverse aortic sections were used for quantification of elastic lamellae and morphometric analysis. The contractility of aortic rings was assessed in an organ bath preparation. RESULTS: The desmosine+isodesmosine content of the abdominal aorta of 6-week-old male pups, was 14.1, 10.0 and 10.1 nmol/mg dry weight in the control (n=20), low- (n=23) and high-dose (n=15) groups, respectively (P=0.007). The median number of elastic lamellae of the distal thoracic aorta was 8.25, 7.13 and 6.88 in the control, low-dose and high-dose groups, respectively (P<0.001). There were no significant differences in aortic cross-sectional areas or media:adventitia ratios. The mean peak tension of aortic rings, in response to phenylephrine, was 1.3 g, 1.12 g and 0.87 g in the control, low- and high-dose groups respectively (P=0.002). CONCLUSION: In rats, exposure to increased amounts of vitamin D during gestation and early life results in a reduction of aortic elastin content, number of elastic lamellae in the aorta and force generation in aortic rings.  (+info)