2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages II. Dissociation of the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation. (1/2660)

Macrophages incubated in 2-deoxy-D-glucose (2-dG)-containing medium showed a marked decrease in cellular ATP content, and were unable to ingest IgG- and complement-coated erythrocytes via the corresponding membrane receptors for these ligands. However, the inhibitory effects of 2-dG on Fc- and C3 receptor-mediated phagocytosis were not a consequence of lowered macrophage ATP levels since addition of glucose or mannose to the culture medium restored the capacity of the macrophages to ingest IgG- and C3-coated particles without increasing ATP levels. These results indicate that Fc- and C3 receptor-mediated phagocytosis (opsonin dependent) differs qualitatively from the ingestion of latex and zymosan particles (opsonin independent); they suggest that the same regulatory molecules govern the responses of phagocytic cells to signals initiated by both the Fc and C3 receptors. The possibility that these molecules are regulated by glycosylation is discussed.  (+info)

The biological clock of very premature primate infants is responsive to light. (2/2660)

Each year more than 250,000 infants in the United States are exposed to artificial lighting in hospital nurseries with little consideration given to environmental lighting cycles. Essential in determining whether environmental lighting cycles need to be considered in hospital nurseries is identifying when the infant's endogenous circadian clock becomes responsive to light. Using a non-human primate model of the developing human, we examined when the circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), becomes responsive to light. Preterm infant baboons of different ages were exposed to light (5,000 lux) at night, and then changes in SCN metabolic activity and gene expression were assessed. After exposure to bright light at night, robust increases in SCN metabolic activity and gene expression were seen at ages that were equivalent to human infants at 24 weeks after conception. These data provide direct evidence that the biological clock of very premature primate infants is responsive to light.  (+info)

Characterization of a leukotriene C4 export mechanism in human platelets: possible involvement of multidrug resistance-associated protein 1. (3/2660)

Platelets express leukotriene (LT) C4 synthase and can thus participate in the formation of bioactive LTC4. To further elucidate the relevance of this capability, we have now determined the capacity of human platelets to export LTC4. Endogenously formed LTC4 was efficiently released from human platelets after incubation with LTA4 at 37 degrees C, whereas only 15% of produced LTC4 was exported when the cells were incubated at 0 degrees C. The activation energy of the process was calculated to 49.9 +/- 7.7 kJ/mol, indicating carrier-mediated LTC4 export. This was also supported by the finding that the transport was saturable, reaching a maximal export rate of 470 +/- 147 pmol LTC4/min x 10(9) platelets. Furthermore, markedly suppressed LTC4 transport was induced by a combination of the metabolic inhibitors antimycin A and 2-deoxyglucose, suggesting energy-dependent export. The presence in platelets of multidrug resistance-associated protein 1 (MRP1), a protein described to be an energy-dependent LTC4 transporter in various cell types, was demonstrated at the mRNA and protein level. Additional support for a role of MRP1 in platelet LTC4 export was obtained by the findings that the process was inhibited by probenecid and the 5-lipoxygenase-activating protein (FLAP) inhibitor, MK-886. The present findings further support the physiological relevance of platelet LTC4 production.  (+info)

Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. (4/2660)

Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.  (+info)

Developmental regulation of genes mediating murine brain glucose uptake. (5/2660)

We examined the molecular mechanisms that mediate the developmental increase in murine whole brain 2-deoxyglucose uptake. Northern and Western blot analyses revealed an age-dependent increase in brain GLUT-1 (endothelial cell and glial) and GLUT-3 (neuronal) membrane-spanning facilitative glucose transporter mRNA and protein concentrations. Nuclear run-on experiments revealed that these developmental changes in GLUT-1 and -3 were regulated posttranscriptionally. In contrast, the mRNA and protein levels of the mitochondrially bound glucose phosphorylating hexokinase I enzyme were unaltered. However, hexokinase I enzyme activity increased in an age-dependent manner suggestive of a posttranslational modification that is necessary for enzymatic activation. Together, the postnatal increase in GLUT-1 and -3 concentrations and hexokinase I enzymatic activity led to a parallel increase in murine brain 2-deoxyglucose uptake. Whereas the molecular mechanisms regulating the increase in the three different gene products may vary, the age-dependent increase of all three constituents appears essential for meeting the increasing demand of the maturing brain to fuel the processes of cellular growth, differentiation, and neurotransmission.  (+info)

Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ETA receptor in 3T3-L1 adipocytes. (6/2660)

Endothelin-1 (ET-1) is a 21-amino acid peptide that binds to G-protein-coupled receptors to evoke biological responses. This report studies the effect of ET-1 on regulating glucose transport in 3T3-L1 adipocytes. ET-1, but not angiotensin II, stimulated glucose uptake in a dose-dependent manner with an EC50 value of 0.29 nM and a 2.47-fold stimulation at 100 nM. ET-1 stimulated glucose uptake in differentiated 3T3-L1 cells but had no effect in undifferentiated cells, although ET-1 stimulated phosphatidylinositol hydrolysis to a similar degree in both. The 3T3-L1 cells expressed approximately 560,000 sites/cell of ETA receptor, which was not altered during differentiation. Western blot analysis and immunofluorescence staining show that ET-1 stimulated the translocation of insulin-responsive aminopeptidase and GLUT4 to the plasma membrane. The effect of ET-1 on glucose uptake was blocked by A-216546, an antagonist selective for the ETA receptor. ET-1 treatment did not induce phosphorylation of insulin receptor beta-subunit, insulin receptor substrate-1, or Akt but stimulated the tyrosyl phosphorylation of a 75-kDa protein. Genistein (100 microM), an inhibitor of tyrosine kinases, inhibited ET-1-stimulated glucose uptake. Our results show that ET-1 stimulates GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes via activation of ETA receptor.  (+info)

High concentration of glucose decreases glucose transporter-1 expression in mouse placenta in vitro and in vivo. (7/2660)

Facilitative glucose transporter-1 (GLUT1) is expressed abundantly and has an important role in glucose transfer in placentas. However, little is known about the regulation of GLUT1 expression in placental cells. We studied the changes in placental GLUT1 levels in relation to changes in glucose concentration in vitro and in vivo. In in vitro experiments, dispersed mouse placental cells were incubated under control (5.5 mM) and moderately high (22 mM) glucose concentrations, and 2-deoxyglucose uptake into cells was studied on days 1-5 of culture. After 4 days of incubation under both conditions, GLUT1 mRNA and proten levels were examined by Northern and immunoblot analyses. Treatment of cells with 22 mM glucose resulted in a significant decrease in 2-deoxyglucose uptake compared with control, from day 2 to day 5 of culture. Moreover, GLUT1 mRNA and protein levels on day 4 of culture were significantly reduced in cells incubated with 22 mM glucose compared with control. Next, we rendered mice diabetic by administering 200 micrograms/g body weight streptozotocin (STZ) on day 8 of pregnancy. Animals were killed on day 12 of pregnancy and placental tissues were obtained. [3H]Cytochalasin B binding study was carried out to assess total GLUTs, and GLUT1 mRNA and protein were measured as above. [3H]Cytochalasin B binding sites in placentas from STZ-treated mice were significantly less than those in control mice. Northern and immunoblot analyses revealed a significant decrease in GLUT1 mRNA and protein levels in diabetic mice compared with the controls. These findings suggest that the glucose concentration may regulate the expression of placental GLUT1.  (+info)

Chronic hypoglycemia and diabetes impair counterregulation induced by localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats. (8/2660)

Previous studies have demonstrated that the ventromedial hypothalamus (VMH) plays a critical role in sensing and responding to systemic hypoglycemia. To evaluate the mechanisms of defective counterregulation caused by iatrogenic hypoglycemia and diabetes per se, we delivered 2-deoxy-glucose (2-DG) via microdialysis into the VMH to produce localized cellular glucopenia in the absence of systemic hypoglycemia. Three groups of awake chronically catheterized rats were studied: 1) nondiabetic (with a mean daily glucose [MDG] of 6.9 mmol/l) BB control rats (n = 5); 2) chronically hypoglycemic nondiabetic (3-4 weeks, with an MDG of 2.7 mmol/l) BB rats (n = 5); and 3) moderately hyperglycemic insulin-treated diabetic (with an MDG of 12.4 mmol/l) BB rats (n = 8). In hypoglycemic rats, both glucagon and catecholamine responses to VMH glucopenia were markedly (77-93%) suppressed. In diabetic rats, VMH 2-DG perfusion was totally ineffective in stimulating glucagon release. The epinephrine response, but not the norepinephrine response, was also diminished by 38% in the diabetic group. We conclude that impaired counterregulation after chronic hypoglycemia may result from alterations of the VMH or its efferent pathways. In diabetes, the capacity of VMH glucopenia to activate the sympathoadrenal system is only modestly diminished; however, the communication between the VMH and the alpha-cell is totally interrupted.  (+info)