ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. (1/1167)

Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling pathway was responsible for BDNF's effects on spine growth. Slice cultures were transfected with enhanced yellow fluorescent protein (eYFP) by particle-mediated gene transfer, and CA1 pyramidal neurons were imaged by laser-scanning confocal microscopy. We confirmed that BDNF (24 h) increases spine density in apical dendrites of CA1 neurons. The MEK (ERK kinase) inhibitors PD98059 and U0126 completely prevented the increase in spine density induced by BDNF, without having an effect on spine density by themselves. In contrast to its actions on cortical pyramidal neurons, BDNF had minor and rather localized effects on dendritic complexity in hippocampal pyramidal neurons, increasing the total length, but not the branching of apical dendrites within CA1 stratum radiatum, without affecting basal dendrites in stratum oriens. Our results support the hypothesis that the ERK-signaling pathway not only mediates long-term synaptic plasticity and hippocampal-dependent learning, but it is also involved in the structural remodeling of excitatory spine synapses triggered by neurotrophins.  (+info)

AMPA-receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus. (2/1167)

Dendritic spines are the site of most excitatory connections in the hippocampus. We have investigated the diffusibility of a membrane-bound green fluorescent protein (mGFP) within the inner leaflet of the plasma membrane using Fluorescence Recovery After Photobleaching. In dendritic spines the diffusion of mGFP was significantly retarded relative to the dendritic shaft. In parallel, we have assessed the motility of dendritic spines, and found an inverse correlation between spine motility and the rate of diffusion of mGFP. We then tested the influence of glutamate receptor activation or blockade, and the involvement of the actin cytoskeleton (using latrunculin A) on spine motility and mGFP diffusion. These results show that glutamate receptors regulate the mobility of molecules in the inner leaflet of the plasma membrane through an action upon the actin cytoskeleton, suggesting a novel mechanism for the regulation of postsynaptic receptor density and composition.  (+info)

Hippocampal synapses depend on hippocampal estrogen synthesis. (3/1167)

Estrogens have been described to induce synaptogenesis in principal neurons of the hippocampus and have been shown to be synthesized and released by exactly these neurons. Here, we have focused on the significance of local estrogen synthesis on spine synapse formation and the synthesis of synaptic proteins. To this end, we reduced hippocampal estrogen synthesis in vitro with letrozole, a reversible nonsteroidal aromatase inhibitor. In hippocampal slice cultures, letrozole treatment resulted in a dose-dependent decrease of 17beta-estradiol as quantified by RIA. This was accompanied by a significant decrease in the density of spine synapses and in the number of presynaptic boutons. Quantitative immunohistochemistry revealed a downregulation of spinophilin, a marker of dendritic spines, and synaptophysin, a protein of presynaptic vesicles, in response to letrozole. Surprisingly, no increase in the density of spines, boutons, and synapses and in spinophilin expression was seen after application of estradiol to the medium of cultures that had not been treated with letrozole. However, synaptophysin expression was upregulated under these conditions. Our results point to an essential role of endogenous hippocampal estrogen synthesis in the maintenance of hippocampal spine synapses.  (+info)

A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. (4/1167)

Recent studies have revealed a marked degree of variation in the pyramidal cell phenotype in visual, somatosensory, motor and prefrontal cortical areas in the brain of different primates, which are believed to subserve specialized cortical function. In the present study we carried out comparisons of dendritic structure of layer III pyramidal cells in the anterior and posterior cingulate cortex and compared their structure with those sampled from inferotemporal cortex (IT) and the primary visual area (V1) in macaque monkeys. Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors was determined, and somal areas measured. We found that pyramidal cells in anterior cingulate cortex were more branched and more spinous than those in posterior cingulate cortex, and cells in both anterior and posterior cingulate were considerably larger, more branched, and more spinous than those in area V1. These data show that pyramidal cell structure differs between posterior dysgranular and anterior granular cingulate cortex, and that pyramidal neurons in cingulate cortex have different structure to those in many other cortical areas. These results provide further evidence for a parallel between structural and functional specialization in cortex.  (+info)

Calcium dynamics in dendritic spines and spine motility. (5/1167)

A dendritic spine is an intracellular compartment in synapses of central neurons. The role of the fast twitching of spines, brought about by a transient rise of internal calcium concentration above that of the parent dendrite, has been hitherto unclear. We propose an explanation of the cause and effect of the twitching and its role in the functioning of the spine as a fast calcium compartment. Our molecular model postulates that rapid spine motility is due to the concerted contraction of calcium-binding proteins. The contraction induces a stream of cytoplasmic fluid in the direction of the dendritic shaft, thus speeding up the time course of spine calcium dynamics, relative to pure diffusion. Simulations indicate that chemical reaction rate theory at the molecular level can explain spine motility. They reveal two time periods in calcium dynamics, as measured recently by other researchers. It appears that rapid motility in dendritic spines increases the efficiency of calcium conduction to the dendrite and speeds up the emptying of the spine. This could play a major role in the induction of synaptic plasticity. A prediction of the model is that alteration of spine motility will modify the time course of calcium in the dendritic spine and could be tested experimentally.  (+info)

Dendritic spinules in rat nigral neurons revealed by acetylcholinesterase immunocytochemistry and serial sections of the dendritic spine heads. (6/1167)

Dendritic spinules of rat nigral neurons were visualized at electron microscopic level by acetylcholinesterase immunocytochemistry and serial sections of the nigral dendrites. The spinules (at least 150 nm in length and 10-20 nm in width) which protruded from the spine heads are found in extracellular space in the neuropil and particularly between nerve terminals of the presynaptic neurons and fine glial processes. The nigral spinules are, however, not observed as invaginated processes in the nerve terminals. The dendritic spinule may be endowed with synaptic plasticity and metabolic exchange between nerve terminals and glial processes.  (+info)

Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. (7/1167)

We studied the long-term effects of amphetamine self-administration experience (or sucrose reward training) on dendritic morphology (spine density) in nucleus accumbens (Nacc), medial (MPC) and orbital prefrontal cortex (OFC), and hippocampus (CA1 and dentate). Independent groups of rats were trained under a continuous schedule of reinforcement to nose-poke for infusions of amphetamine (0.125 mg/kg/inf) or to receive sucrose pellets during 2 h daily test sessions for 14-20 days. One month after the last training session, the brains were collected and processed for Golgi-Cox staining. We found that: (i) amphetamine self-administration experience selectively increased spine density on medium spiny neurons in the Nacc and on pyramidal neurons in the MPC; (ii) in contrast, amphetamine self-administration decreased spine density in the OFC, whereas sucrose-reward training increased spine density; and (iii) both amphetamine self-administration and sucrose-reward experience increased spines in the CA1, but had no effect in the dentate gyrus. Thus, amphetamine self-administration experience produces long-lasting and regionally-selective morphological alterations in rat forebrain--alterations that may underlie some of the persistent psychomotor, cognitive and motivational consequences of chronic drug exposure.  (+info)

A morphological correlate of synaptic scaling in visual cortex. (8/1167)

We studied the response of dendritic spines in the thalamic-recipient zone of rat visual cortex to simple manipulations of the visual environment. We measured the morphologies of a total of 3824 spines located on the basal dendrites of 60 layer 3 pyramidal cells. As expected from previous studies, we found a significantly lower spine density in dark-reared animals at postnatal day 30 (P30) compared with light-reared controls. Additional analysis revealed that the spines in dark-reared animals were significantly shorter and more bulbous than in light-reared animals. When these two results were combined, we found that the total synaptic area per unit length of dendrite was conserved, compatible with the phenomenon of "synaptic scaling." We also found that the increase in average spine head diameter is reversed by 10 d of light exposure (starting at P20), but surprisingly, the decrease in spine density is not. Thus, not all effects of dark rearing can be reversed by subsequent visual experience, even when the experience occurs during the third postnatal week.  (+info)