Solid-phase microextraction for cannabinoids analysis in hair and its possible application to other drugs. (1/260)

This paper describes the application of solid-phase microextraction (SPME) to cannabis testing in hair. Fifty milligrams of hair was washed with petroleum ether, hydrolyzed with NaOH, neutralized, deuterated internal standard was added and directly submitted to SPME. The SPME was analyzed by GC-MS. The limit of detection was 0.1 ng/mg for cannabinol (CBN) and delta9-tetrahydrocannabinol (THC) and 0.2 ng/mg for cannabidiol (CBD). THC was detected in a range spanning from 0.1 to 0.7 ng/mg. CBD concentrations ranged from 0.7 to 14.1 ng/mg, and CBN concentrations ranged from 0.4 to 0.7 ng/mg. The effectiveness of different decontamination procedures was also studied on passively contaminated hair. The proposed method is also suitable for the analysis of methadone in hair; cocaine and cocaethylene can be detected in hair with SPME extraction after enzymatic hydrolysis.  (+info)

Gastric decontamination--a view for the millennium. (2/260)

The management of acute poisoning remains an important part of accident and emergency (A&E) care. Three gastric decontamination procedures have been widely used: gastric lavage, ipecac, and activated charcoal. Their role has recently been reviewed and position statements developed by working groups of the American Academy of Clinical Toxicology and the European Association of Poisons Centres and Clinical Toxicologists. These have important implications for A&E, as they indicate that activated charcoal is now the agent of choice for most poisons, but than in most situations it is probably only effective if given within an hour of overdose. Ipecac is effectively obsolete and gastric lavage has a narrow range of indications, principally for potentially serious amounts of agents not adsorbed by charcoal. Protocols for care of overdose patients should be modified accordingly.  (+info)

In vivo skin decontamination of methylene bisphenyl isocyanate (MDI): soap and water ineffective compared to polypropylene glycol, polyglycol-based cleanser, and corn oil. (3/260)

In the home and workplace, decontamination of a chemical from skin is traditionally done with a soap-and-water wash, although some workplaces may have emergency showers. It has been assumed that these procedures are effective, yet workplace illness and even death occur from chemical contamination. Water, or soap and water, may not be the most effective means of skin decontamination, particularly for fat-soluble materials. This study was undertaken to help determine whether there are more effective means of removing methylene bisphenyl isocyanate (MDI), a potent contact sensitizer, from the skin. MDI is an industrial chemical for which skin decontamination, using traditional soap and water and nontraditional polypropylene glycol, a polyglycol-based cleanser (PG-C), and corn oil were all tried in vivo on the rhesus monkey, over 8 h. Water, alone and with soap (5% and 50% soap), were partially effective in the first h after exposure, removing 51-69% of the applied dose. However, decontamination fell to 40-52% at 4 h and 29-46% by 8 h. Thus, the majority of MDI was not removed by the traditional soap-and-water wash; skin tape stripping after washing confirmed that MDI was still on the skin. In contrast, polypropylene glycol, PG-C, and corn oil all removed 68-86% of the MDI in the first h, 74-79% at 4 h, and 72-86% at 8 h. Statistically, polypropylene glycol, PG-C, and corn oil were all better (p < 0.05) than soap and water at 4 and 8 h after dose application. These results indicate that a traditional soap-and-water wash and the emergency water shower are relatively ineffective at removing MDI from the skin. More effective decontamination procedures, as shown here, are available. These procedures are consistent with the partial miscibility of MDI in corn oil and polyglycols.  (+info)

Plasma jet takes off. (4/260)

Thanks to a series of joint research projects by Los Alamos National Laboratory, Beta Squared of Allen, Texas, and the University of California at Los Angeles, there is now a more environmentally sound method for cleaning semiconductor chips that may also be effective in cleaning up chemical, bacterial, and nuclear contaminants. The Atmospheric Pressure Plasma Jet uses a type of ionized gas called plasma to clean up contaminants by binding to them and lifting them away. In contrast to the corrosive acids and chemical solvents traditionally used to clean semiconductor chips, the jet oxidizes contaminants, producing only benign gaseous by-products such as oxygen and carbon dioxide. The new technology is also easy to transport, cleans thoroughly and quickly, and presents no hazards to its operators.  (+info)

Germicidal ultraviolet irradiation in air conditioning systems: effect on office worker health and wellbeing: a pilot study. (5/260)

OBJECTIVES: The indoor environment of modern office buildings represents a new ecosystem that has been created totally by humans. Bacteria and fungi may contaminate this indoor environment, including the ventilation systems themselves, which in turn may result in adverse health effects. The objectives of this study were to test whether installation and operation of germicidal ultraviolet (GUV) lights in central ventilation systems would be feasible, without adverse effects, undetected by building occupants, and effective in eliminating microbial contamination. METHODS: GUV lights were installed in the ventilation systems serving three floors of an office building, and were turned on and off during a total of four alternating 3 week blocks. Workers reported their environmental satisfaction, symptoms, as well as sickness absence, without knowledge of whether GUV lights were on or off. The indoor environment was measured in detail including airborne and surface bacteria and fungi. RESULTS: Airborne bacteria and fungi were not significantly different whether GUV lights were on or off, but were virtually eliminated from the surfaces of the ventilation system after 3 weeks of operation of GUV light. Of the other environmental variables measured, only total airborne particulates were significantly different under the two experimental conditions--higher with GUV lights on than off. Of 113 eligible workers, 104 (87%) participated; their environmental satisfaction ratings were not different whether GUV lights were on or off. Headache, difficulty concentrating, and eye irritation occurred less often with GUV lights on whereas skin rash or irritation was more common. Overall, the average number of work related symptoms reported was 1.1 with GUV lights off compared with 0.9 with GUV lights on. CONCLUSION: Installation and operation of GUV lights in central heating, ventilation and air conditioning systems of office buildings is feasible, cannot be detected by workers, and does not seem to result in any adverse effects.  (+info)

A national audit of the laboratory diagnosis of tuberculosis and other mycobacterial diseases within the United Kingdom. (6/260)

In order to audit United Kingdom laboratory diagnostic and reference services including novel molecular methods for tuberculosis, a questionnaire was sent to laboratories submitting specimens to the PHLS Mycobacterium Reference Unit (MRU) and regional centres and to the Scottish Mycobacteria Reference Laboratory (SMRL) in 1996-7. Nationally, 67.2% of laboratories responded. Most UK laboratories were fully or conditionally CPA accredited and take part in the NEQAS proficiency scheme. On average only 3.3% of primary samples submitted for mycobacterial diagnosis in 1995 produced a mycobacterial culture from approximately half as many patients (that is, a mean of 1488 specimens producing 49 isolates from 23 patients). Potentially over 380,000 specimens are processed for mycobacteria in the UK each year. The majority of laboratories use 4% NaOH +/- NALC for specimen decontamination. Culture on solid media was used by most laboratories and 62.9% also use liquid media. Most laboratories incubated cultures for eight weeks. Few laboratories use molecular diagnostic methods. Laboratories were most likely to use molecular methods for diagnosing tuberculous meningitis and for specimens from immunocompromised patients, although usage was strongly influenced by cost. Within England and Wales 43.9% (47/107) and 56% (61/109) of laboratories wanted a rapid service for rifampicin resistance detection in M tuberculosis from immunocompetent and immunocompromised patients, respectively. In regard to a tuberculous meningitis service, 80.5% (43/112) and 84.3% (102/121) of laboratories wanted this service for immunocompetent and immunocompromised patients, respectively. The quality of reference services was rated as "very good"/"good" by 85.6% of respondents nationally. Rapid molecular amplification diagnostic services were established at the PHLS MRU for rifampicin drug resistance detection nationally and for tuberculous meningitis at the MRU.  (+info)

The sources, fate, and toxicity of chemical warfare agent degradation products. (7/260)

We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an evaluation of both the agent and thiodiglycol.  (+info)

Gastric decontamination performed 5 min after the ingestion of temazepam, verapamil and moclobemide: charcoal is superior to lavage. (8/260)

AIMS: The aim was to study the efficacy of gastric lavage and activated charcoal in preventing the absorption of temazepam, verapamil and moclobemide when gastric decontamination was performed immediately after ingestion of the drugs. METHODS: Nine healthy volunteers took part in a randomized cross-over study with three phases. The subjects were administered single oral doses of 10 mg temazepam, 80 mg verapamil and 150 mg moclobemide. Five minutes later, they were assigned to one of the following treatments: 200 ml water (control), 25 g activated charcoal as a suspension in 200 ml water or gastric lavage. Plasma concentrations and the cumulative excretion into urine of the three drugs were determined up to 24 h. RESULTS: The mean AUC(0,24 h) of temazepam, verapamil and moclobemide was reduced by 95.2% (P < 0.01), 92.8% (P < 0.01) and 99. 7% (P < 0.01), respectively, by activated charcoal compared with control. Gastric lavage did not reduce significantly the AUC(0,24 h) of these drugs. The 24 h cumulative excretion of temazepam, verapamil and moclobemide into urine was reduced significantly (P < 0.05) by charcoal but not by gastric lavage. Charcoal reduced the AUC(0,24 h), Cmax and urinary excretion of all three drugs significantly more than lavage. CONCLUSIONS: Activated charcoal is very effective and gastric lavage can be rather ineffective in preventing the absorption of temazepam, verapamil and moclobemide when the treatment is given very rapidly after ingestion of the drugs, before tablet disintegration has occurred.  (+info)