Suppressor analysis of mutations in the 5'-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae. (1/489)

The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.  (+info)

Translation of the edited mRNA for cytochrome b in trypanosome mitochondria. (2/489)

The type of RNA editing found in the kinetoplast-mitochondria of trypanosomes and related protozoa, involving uridylate insertions and deletions, creates translatable messenger RNAs (mRNAs) out of nonsense pre-edited RNAs by correcting encoded defects that vary from simple frameshifts to large "cryptic" regions. However, any evidence for translation of these mRNAs in the kinetoplast has been missing for decades. We identified a kinetoplast-encoded protein, apocytochrome b, whose mRNA is edited in the 5' region. The determined amino-terminal sequence of the protein coincides with the predicted sequence derived from the edited region, demonstrating that the cognate apocytochrome b mRNA is translated into a functional protein. This finding represents the first direct evidence for a functional translation system in the kinetoplasts.  (+info)

Nucleotide sequence and intron structure of the apocytochrome b gene of Neurospora crassa mitochondria. (3/489)

The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  (+info)

Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae. (4/489)

Pentamidine inhibits in vitro splicing of nuclear group I introns from rRNA genes of some pathogenic fungi and is known to inhibit mitochondrial function in yeast. Here we report that pentamidine inhibits the self-splicing of three group I and two group II introns of yeast mitochondria. Comparison of yeast strains with different configurations of mitochondrial introns (12, 5, 4, or 0 introns) revealed that strains with the most introns were the most sensitive to growth inhibition by pentamidine on glycerol medium. Analysis of blots of RNA from yeast strains grown in raffinose medium in the presence or absence of pentamidine revealed that the splicing of seven group I and two group II introns that have intron reading frames was inhibited by the drug to varying extents. Three introns without reading frames were unaffected by the drug in vivo, and two of these were inhibited in vitro, implying that the drug affects splicing by acting directly on RNA in vitro, but on another target in vivo. Because the most sensitive introns in vivo are the ones whose splicing depends on a maturase encoded by the intron reading frames, we tested pentamidine for effects on mitochondrial translation. We found that the drug inhibits mitochondrial but not cytoplasmic translation in cells at concentrations that inhibit mitochondrial intron splicing. Therefore, pentamidine is a potent and specific inhibitor of mitochondrial translation, and this effect explains most or all of its effects on respiratory growth and on in vivo splicing of mitochondrial introns.  (+info)

RNA editing in Trypanosoma brucei: characterization of gRNA U-tail interactions with partially edited mRNA substrates. (5/489)

Guide RNAs (gRNAs), key components of the RNA editing reaction in Trypanosoma brucei, direct the insertion and deletion of uridylate (U) residues. Analyses of gRNAs reveal three functional elements. The 5'-end of the gRNA contains the anchor, which is responsible for selection and binding to the pre-edited mRNA. The second element (the guiding region) provides the information required for editing. At the 3'-end of the gRNA is a non-encoded U-tail, whose function remains unclear. However, the cleavage-ligation model for editing proposes that the U-tail binds to purine-rich regions upstream of editing sites, thereby strengthening the interaction and holding onto the 5' cleavage product. Our previous studies demonstrated that the U-tail interacts with upstream sequences and may play roles in both stabilization and tethering. These studies also indicated that the U-tail interactions involved mRNA regions that were to be subsequently edited. This raised the question of what happens to the mRNA-U-tail interaction as editing proceeds in the 3'-->5' direction. We examined gCYb-558 and its U-tail interaction with 5'CYbUT and two partially edited 5'CYb substrates. Our results indicate that the 3'-end of the U-tail interacts with the same sequence in all three mRNAs. Predicted secondary structures using crosslinking data suggest that a similar structure is maintained as editing proceeds. These results indicate that the role of the U-tail may also involve maintenance of important secondary structure motifs.  (+info)

COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. (6/489)

To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion.  (+info)

Stimulation of cytochrome P450 reactions by apo-cytochrome b5: evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b5 or heme oxygenase. (7/489)

Many cytochrome P450 (P450)-dependent reactions have been shown to be stimulated by another microsomal protein, cytochrome b(5) (b(5)). Two major explanations are (i) direct electron transfer from b(5) and (ii) a conformational effect in the absence of electron transfer. Some P450s (e.g. 3A4, 2C9, 17A, and 4A7) are stimulated by either b(5) or b(5) devoid of heme (apo-b(5)), indicating a lack of electron transfer, whereas other P450s (e.g. 2E1) are stimulated by b(5) but not by apo-b(5). Recently, a proposal has been made by Guryev et al. (Biochemistry 40, 5018-5031, 2001) that the stimulation by apo-b(5) can be explained only by transfer of heme from P450 preparations to apo-b(5), enabling electron transfer. We have repeated earlier findings of stimulation of catalytic activity of testosterone 6beta-hydroxylation activities with four P450 preparations, in which nearly all of the heme was accounted for as P450. Spectral analysis of mixtures indicated that only approximately 5% of the heme can be transferred to apo-b(5), which cannot account for the observed stimulation. The presence of the heme scavenger apomyoglobin did not inhibit the stimulation of P450 3A4-dependent testosterone or nifedipine oxidation activity. Further evidence against the presence of loosely bound P450 3A4 heme was provided in experiments with apo-heme oxygenase, in which only 3% of the P450 heme was converted to biliverdin. Finally, b(5) supported NADH-b(5) reductase/P450 3A4-dependent testosterone 6beta-hydroxylation, but apo-b(5) did not. Thus, apo-b(5) can stimulate P450 3A4 reactions as well as b(5) in the absence of electron transfer, and heme transfer from P450 3A4 to apo-b(5) cannot be used to explain the catalytic stimulation.  (+info)

cis Recognition elements in plant mitochondrion RNA editing. (8/489)

RNA editing in higher plant mitochondria modifies mRNA sequences by means of C-to-U conversions at highly specific sites. To determine the cis elements involved in recognition of an editing site in plant mitochondria, deletion and site-directed mutation constructs containing the cognate cox II mitochondrial gene were introduced into purified mitochondria by electroporation. The RNA editing status was analyzed for precursor and spliced transcripts from the test construct. We found that only a restricted number of nucleotides in the vicinity of the target C residue were necessary for recognition by the editing machinery and that the nearest neighbor 3' residues were crucial for the editing process. We provide evidence that two functionally distinguishable sequences can be defined: the 16-nucleotide 5' region, which can be replaced with the same region from another editing site, and a 6-nucleotide 3' region specific to the editing site. The latter region may play a role in positioning the actual editing residue.  (+info)