Activation of telomerase and its association with G1-phase of the cell cycle during UVB-induced skin tumorigenesis in SKH-1 hairless mouse. (1/4016)

Telomerase is a ribonucleoprotein enzyme that adds hexanucleotide repeats TTAGGG to the ends of chromosomes. Telomerase activation is known to play a crucial role in cell-immortalization and carcinogenesis. Telomerase is shown to have a correlation with cell cycle progression, which is controlled by the regulation of cyclins, cyclin dependent kinases (cdks) and cyclin dependent kinase inhibitors (cdkis). Abnormal expression of these regulatory molecules may cause alterations in cell cycle with uncontrolled cell growth, a universal feature of neoplasia. Skin cancer is the most prevalent form of cancer in humans and the solar UV radiation is its major cause. Here, we investigated modulation in telomerase activity and protein expression of cell cycle regulatory molecules during the development of UVB-induced tumors in SKH-1 hairless mice. The mice were exposed to 180 mjoules/cm2 UVB radiation, thrice weekly for 24 weeks. The animals were sacrificed at 4 week intervals and the studies were performed in epidermis. Telomerase activity was barely detectable in the epidermis of non-irradiated mouse. UVB exposure resulted in a progressive increase in telomerase activity starting from the 4th week of exposure. The increased telomerase activity either persisted or further increased with the increased exposure. In papillomas and carcinomas the enzyme activity was comparable and was 45-fold higher than in the epidermis of control mice. Western blot analysis showed an upregulation in the protein expression of cyclin D1 and cyclin E and their regulatory subunits cdk4 and cdk2 during the course of UVB exposure and in papillomas and carcinomas. The protein expression of cdk6 and ckis viz. p16/Ink4A, p21/Waf1 and p27/Kip1 did not show any significant change in UVB exposed skin, but significant upregulation was observed both in papillomas and carcinomas. The results suggest that telomerase activation may be involved in UVB-induced tumorigenesis in mouse skin and that increased telomerase activity may be associated with G1 phase of the cell cycle.  (+info)

Comparative molecular genetic profiles of anaplastic astrocytomas/glioblastomas multiforme and their subsequent recurrences. (2/4016)

Malignant glial tumors (anaplastic astrocytomas and glioblastomas multiforme) arise mostly either from the progression of low grade precursor lesions or rapidly in a de novo fashion and contain distinct genetic alterations. There is, however, a third subset of malignant gliomas in which genetic lesions remain to be identified. Following surgical resection, all gliomas appear to have an inherent tendency to recur. Comparative molecular analysis of ten primary malignant gliomas (three anaplastic astrocytomas and seven glioblastomas multiforme) with their recurrences identified two distinct subgroups of recurrent tumors. In one group, primary tumors harbored genetic aberrations frequently associated with linear progression or de novo formation pathways of glial tumorigenesis and maintained their genetic profiles upon recurrence. In the other subset with no detectable known genetic mutations at first presentation, the recurrent tumors sustained specific abnormalities associated with pathways of linear progression or de novo formation. These included loss of genes on chromosomes 17 and 10, mutations in the p53 gene, homozygous deletion of the DMBTA1 and p16 and/ or p15 genes and amplification and/or overexpression of CDK4 and alpha form of the PDGF receptor. Recurrent tumors from both groups also displayed an abnormal expression profile of the metalloproteinase, gel A, and its inhibitor, TIMP-2, consistent with their highly invasive behavior. Delineation of the molecular differences between malignant glioblastomas and their subsequent recurrences may have important implications for the development of rational clinical approaches for this neoplasm that remains refractory to existing therapeutic modalities.  (+info)

The role of RBF in the introduction of G1 regulation during Drosophila embryogenesis. (3/4016)

The first appearance of G1 during Drosophila embryogenesis, at cell cycle 17, is accompanied by the down-regulation of E2F-dependent transcription. Mutant alleles of rbf were generated and analyzed to determine the role of RBF in this process. Embryos lacking both maternal and zygotic RBF products show constitutive expression of PCNA and RNR2, two E2F-regulated genes, indicating that RBF is required for their transcriptional repression. Despite the ubiquitous expression of E2F target genes, most epidermal cells enter G1 normally. Rather than pausing in G1 until the appropriate time for cell cycle progression, many of these cells enter an ectopic S-phase. These results indicate that the repression of E2F target genes by RBF is necessary for the maintenance but not the initiation of a G1 phase. The phenotype of RBF-deficient embryos suggests that rbf has a function that is complementary to the roles of dacapo and fizzy-related in the introduction of G1 during Drosophila embryogenesis.  (+info)

Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. (4/4016)

Proliferating myoblasts express the muscle determination factor, MyoD, throughout the cell cycle in the absence of differentiation. Here we show that a mitogen-sensitive mechanism, involving the direct interaction between MyoD and cdk4, restricts myoblast differentiation to cells that have entered into the G0 phase of the cell cycle under mitogen withdrawal. Interaction between MyoD and cdk4 disrupts MyoD DNA-binding, muscle-specific gene activation and myogenic conversion of 10T1/2 cells independently of cyclin D1 and the CAK activation of cdk4. Forced induction of cyclin D1 in myotubes results in the cytoplasmic to nuclear translocation of cdk4. The specific MyoD-cdk4 interaction in dividing myoblasts, coupled with the cyclin D1-dependent nuclear targeting of cdk4, suggests a mitogen-sensitive mechanism whereby cyclin D1 can regulate MyoD function and the onset of myogenesis by controlling the cellular location of cdk4 rather than the phosphorylation status of MyoD.  (+info)

Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. (5/4016)

The D-type cyclins and their major kinase partners CDK4 and CDK6 regulate G0-G1-S progression by contributing to the phosphorylation and inactivation of the retinoblastoma gene product, pRB. Assembly of active cyclin D-CDK complexes in response to mitogenic signals is negatively regulated by INK4 family members. Here we show that although all four INK4 proteins associate with CDK4 and CDK6 in vitro, only p16(INK4a) can form stable, binary complexes with both CDK4 and CDK6 in proliferating cells. The other INK4 family members form stable complexes with CDK6 but associate only transiently with CDK4. Conversely, CDK4 stably associates with both p21(CIP1) and p27(KIP1) in cyclin-containing complexes, suggesting that CDK4 is in equilibrium between INK4 and p21(CIP1)- or p27(KIP1)-bound states. In agreement with this hypothesis, overexpression of p21(CIP1) in 293 cells, where CDK4 is bound to p16(INK4a), stimulates the formation of ternary cyclin D-CDK4-p21(CIP1) complexes. These data suggest that members of the p21 family of proteins promote the association of D-type cyclins with CDKs by counteracting the effects of INK4 molecules.  (+info)

Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. (6/4016)

To investigate the mode of action of the p16(INK4a) tumor suppressor protein, we have established U2-OS cells in which the expression of p16(INK4a) can be regulated by addition or removal of isopropyl-beta-D-thiogalactopyranoside. As expected, induction of p16(INK4a) results in a G1 cell cycle arrest by inhibiting phosphorylation of the retinoblastoma protein (pRb) by the cyclin-dependent kinases CDK4 and CDK6. However, induction of p16(INK4a) also causes marked inhibition of CDK2 activity. In the case of cyclin E-CDK2, this is brought about by reassortment of cyclin, CDK, and CDK-inhibitor complexes, particularly those involving p27(KIP1). Size fractionation of the cellular lysates reveals that a substantial proportion of CDK4 participates in active kinase complexes of around 200 kDa. Upon induction of p16(INK4a), this complex is partly dissociated, and the majority of CDK4 is found in lower-molecular-weight fractions consistent with the formation of a binary complex with p16(INK4a). Sequestration of CDK4 by p16(INK4a) allows cyclin D1 to associate increasingly with CDK2, without affecting its interactions with the CIP/KIP inhibitors. Thus, upon the induction of p16(INK4a), p27(KIP1) appears to switch its allegiance from CDK4 to CDK2, and the accompanying reassortment of components leads to the inhibition of cyclin E-CDK2 by p27(KIP1) and p21(CIP1). Significantly, p16(INK4a) itself does not appear to form higher-order complexes, and the overwhelming majority remains either free or forms binary associations with CDK4 and CDK6.  (+info)

Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. (7/4016)

The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1 cyclin-cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21(Sdi1,Cip1,Waf1), which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16(Ink4a), suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E- and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by +info)

Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice. (8/4016)

The response of the uterine epithelium to female sex steroid hormones provides an excellent model to study cell proliferation in vivo since both stimulation and inhibition of cell proliferation can be studied. Thus, when administered to ovariectomized adult mice 17beta-estradiol (E2) stimulates a synchronized wave of DNA synthesis and cell division in the epithelial cells, while pretreatment with progesterone (P4) completely inhibits this E2-induced cell proliferation. Using a simple method to isolate the uterine epithelium with high purity, we have shown that E2 treatment induces a relocalization of cyclin D1 and, to a lesser extent, cdk4 from the cytoplasm into the nucleus and results in the orderly activation of cyclin E- and cyclin A-cdk2 kinases and hyperphosphorylation of pRb and p107. P4 pretreatment did not alter overall levels of cyclin D1, cdk4, or cdk6 nor their associated kinase activities but instead inhibited the E2-induced nuclear localization of cyclin D1 to below the control level and, to a lesser extent, nuclear cdk4 levels, with a consequent inhibition of pRb and p107 phosphorylation. In addition, it abrogated E2-induced cyclin E-cdk2 activation by dephosphorylation of cdk2, followed by inhibition of cyclin A expression and consequently of cyclin A-cdk2 kinase activity and further inhibition of phosphorylation of pRb and p107. P4 is used therapeutically to oppose the effect of E2 during hormone replacement therapy and in the treatment of uterine adenocarcinoma. This study showing a novel mechanism of cell cycle inhibition by P4 may provide the basis for the development of new antiestrogens.  (+info)