Cyanide poisoning: pathophysiology and treatment recommendations. (1/1572)

This paper aims to assess and compare currently available antidotes for cyanide poisoning. Such evaluation, however, is difficult. Thus, extrapolation from the results of animal studies has potential pitfalls, as significant inter-species differences in response may exist, and these experiments often involve administration of toxin and antidote almost simultaneously, rather than incorporating a more realistic time delay before initiation of treatment. Direct inference from human case reports is also problematic; either because of uncertainties over the exposure levels involved (and hence the likely outcome without treatment), or because of difficulties in identifying the specific contribution of a particular antidote within the overall treatment regimen. Certainly an effort to compare the relative efficacy of cyanide antidotes produces equivocal findings, with no single regimen clearly standing out. Indeed, factors such as the risks of antidote toxicity to various individuals and other practical issues, may be more important considerations. There is therefore no single treatment regimen which is best for all situations. Besides individual risk factors for antidote toxicity, the nature of the exposure and hence its likely severity, the evolving clinical features and the number of persons involved and their proximity to hospital facilities, all need to be considered. Clinically mild poisoning may be treated by rest, oxygen and amyl nitrite. Intravenous antidotes are indicated for moderate poisoning. Where the diagnosis is uncertain, sodium thiosulphate may be the first choice. With severe poisoning, an additional agent is required. Given the various risks with methaemoglobin formers or with unselective use of kelocyanor, hydroxocobalamin may be preferred from a purely risk-benefit perspective. However the former alternatives will likely remain important.  (+info)

Alternative oxidase inhibitors potentiate the activity of atovaquone against Plasmodium falciparum. (2/1572)

Recent evidence suggests that the malaria parasite Plasmodium falciparum utilizes a branched respiratory pathway including both a cytochrome chain and an alternative oxidase. This branched respiratory pathway model has been used as a basis for examining the mechanism of action of two antimalarial agents, atovaquone and proguanil. In polarographic assays, atovaquone immediately reduced the parasite oxygen consumption rate in a concentration-dependent manner. This is consistent with its previously described role as an inhibitor of the cytochrome bc1 complex. Atovaquone maximally inhibited the rate of P. falciparum oxygen consumption by 73% +/- 10%. At all atovaquone concentrations tested, the addition of the alternative oxidase inhibitor, salicylhydroxamic acid, resulted in a further decrease in the rate of parasite oxygen consumption. At the highest concentrations of atovaquone tested, the activities of salicylhydroxamic acid and atovaquone appear to overlap, suggesting that at these concentrations, atovaquone partially inhibits the alternative oxidase as well as the cytochrome chain. Drug interaction studies with atovaquone and salicylhydroxamic acid indicate atovaquone's activity against P. falciparum in vitro is potentiated by this alternative oxidase inhibitor, with a sum fractional inhibitory concentration of 0.6. Propyl gallate, another alternative oxidase inhibitor, also potentiated atovaquone's activity, with a sum fractional inhibitory concentration of 0.7. Proguanil, which potentiates atovaquone activity in vitro and in vivo, had a small effect on parasite oxygen consumption in polarographic assays when used alone or in the presence of atovaquone or salicylhydroxamic acid. This suggests that proguanil does not potentiate atovaquone by direct inhibition of either branch of the parasite respiratory chain.  (+info)

Preparation and properties of S-cyano derivatives of creatine kinase. (3/1572)

The two reactive thiol groups of rabbit muscle creatine kinase were stoichiometrically reacted with 5,5'-dithio-bis(2-nitrobenzoic acid). In the resulting inactive mixed disulfide derivative they were subsequently substituted with [14C]cyanide, the smallest uncharged thiol-blocking group. The modified enzyme contained 1.6 mol label/mol protein and showed by Ellman's titration and amino acid analysis a concomitant loss of about 0.8 - 0.9-SH group per subunit. This mono-S-cyano derivative of creatine kinase was found 73% as active as the native unmodified protein. It was still able to react in the native state with a variety of thiol reagents with the further blocking of another pair of thiol groups; their substitution once more with cyanide resulted in the bis-S-cyano derivative of creatine kinase, which lost 2 thiol groups per subunit and had about 50% of the original catalytic activity. It is concluded that the four cyanylated thiol groups are not required for the catalytic activity of creatine kinase and the cyanoprotein derivatives described are shown to be useful tools for some interesting investigations related to this enzyme.  (+info)

Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. (4/1572)

Previous studies have shown that nitric oxide (NO) inhibits carotid body sensory activity. To begin to understand the cellular mechanisms associated with the actions of NO in the carotid body, we monitored the effects of NO donors on the macroscopic Ca2+ current in glomus cells isolated from rabbit carotid bodies. Experiments were performed on freshly dissociated glomus cells from adult rabbit carotid bodies using the whole cell configuration of the patch-clamp technique. The NO donors sodium nitroprusside (SNP; 600 microM, n = 7) and spermine nitric oxide (SNO; 100 microM, n = 7) inhibited the Ca2+ current in glomus cells in a voltage-independent manner. These effects of NO donors were rapid in onset and peaked within 1 or 2 min. In contrast, the outward K+ current was unaffected by SNP (600 microM, n = 6), indicating that the inhibition by SNP was not a nonspecific membrane effect. 2-(4-carboxyphenyl)-4,4,5, 5-tetramethyl-imidazoline-1-oxyl-3-oxide (carboxy-PTIO; 500 microM), an NO scavenger, prevented inhibition of the Ca2+ current by SNP (n = 7), whereas neither superoxide dismutase (SOD; 2,000 U/ml, n = 4), a superoxide scavenger, nor sodium hydrosulfite (SHS; 1 mM, n = 7), a reducing agent, prevented inhibition of the Ca2+ current by SNP. However, SNP inhibition of the Ca2+ current was reversible in the presence of either SOD or SHS. These results suggest that NO itself inhibits Ca2+ current in a reversible manner and that subsequent formation of peroxynitrites results in irreversible inhibition. SNP inhibition of the Ca2+ current was not affected by 30 microM LY 83, 583 (n = 7) nor was it mimicked by 600 microM 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP; n = 6), suggesting that the effects of NO on the Ca2+ current are mediated, in part, via a cGMP-independent mechanism. N-ethylmaleimide (NEM; 2.5 mM, n = 6) prevented the inhibition of the Ca2+ current by SNP, indicating that SNP is acting via a modification of sulfhydryl groups on Ca2+ channel proteins. Norepinephrine (NE; 10 microM) further inhibited the Ca2+ current in the presence of NEM (n = 7), implying that NEM did not nonspecifically eliminate Ca2+ current modulation. Nisoldipine, an L-type Ca2+ channel blocker (2 microM, n = 6), prevented the inhibition of Ca2+ current by SNP, whereas omega-conotoxin GVIA, an N-type Ca2+ channel blocker (1 microM, n = 9), did not prevent the inhibition of Ca2+ current by SNP. These results demonstrate that NO inhibits L-type Ca2+ channels in adult rabbit glomus cells, in part, due to a modification of calcium channel proteins. The inhibition might provide one plausible mechanism for efferent inhibition of carotid body activity by NO.  (+info)

Influence of different types of effectors on the kinetic parameters of suicide inactivation of catalase by hydrogen peroxide. (5/1572)

The effects of cyanide and azide ions (class A), sodium-n-dodecyl sulphate (SDS) and 2-mercaptoethanol (class B), 3-aminotriazole (class C) and NADPH (class D) on the initial activity (ai), inactivation rate constant (ki) and the partition ratio (r) of bovine liver catalase reaction with its suicide substrate, hydrogen peroxide, were studied in 50 mM sodium phosphate buffer, pH 7.0 at 27 degrees C. The above kinetic parameters were determined by processing the progress curve data. In class A, which contains fast and reversible inhibitors of catalase, a proportional decrease in ai and ki was observed by inhibitors, so that the r remained constant. In class B, which contains slow and irreversible inactivators, a decrease in ai and constancy of ki and r were observed when catalase was incubated in the presence of such inactivators for a determined time. In class C, containing effector which can combine with intermediate compound I, ai was relatively unchanged but an increase in ki and a decrease in r were observed. In class D, containing effector which reduces compound I to ferricatalase, ai was not affected significantly but some decrease in ki was detected which was linked with an increase in r. These results demonstrate that different classes of effectors affect the determined kinetic parameters of catalase in various ways. Thus, determination of such parameters by simple kinetic experiments can be carried out for classification of the agents which have an effect on the kinetics of catalase.  (+info)

The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774. (6/1572)

Desulfoferrodoxin (Dfx), a small iron protein containing two mononuclear iron centres (designated centre I and II), was shown to complement superoxide dismutase (SOD) deficient mutants of Escherichia coli [Pianzzola, M.J., Soubes M. & Touati, D. (1996) J. Bacteriol. 178, 6736-6742]. Furthermore, neelaredoxin, a protein from Desulfovibrio gigas containing an iron site similar to centre II of Dfx, was recently shown to have a significant SOD activity [Silva, G., Oliveira, S., Gomes, C.M., Pacheco, I., Liu, M.Y., Xavier, A.V., Teixeira, M., Le Gall, J. & Rodrigues-Pousada, C. (1999) Eur. J. Biochem. 259, 235-243]. Thus, the SOD activity of Dfx isolated from the sulphate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 was studied. The protein exhibits a SOD activity of 70 U x mg-1, which increases approximately 2.5-fold upon incubation with cyanide. Cyanide binds specifically to Dfx centre II, yielding a low-spin iron species with g-values at 2.27 (g perpendicular) and 1.96 (g parallel). Upon reaction of fully oxidized Dfx with the superoxide generating system xanthine/xanthine oxidase, Dfx centres I and II become partially reduced, suggesting that Dfx operates by a redox cycling mechanism, similar to those proposed for other SODs. Evidence for another SOD in D. desulfuricans is also presented - this enzyme is inhibited by cyanide, and N-terminal sequence data strongly indicates that it is an analogue to Cu,Zn-SODs isolated from other sources. This is the first indication that a Cu-containing protein may be present in a sulphate-reducing bacterium.  (+info)

Phenylacetyl-CoA:acceptor oxidoreductase, a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica. (7/1572)

Phenylacetic acids are common intermediates in the microbial metabolism of various aromatic substrates including phenylalanine. In the denitrifying bacterium Thauera aromatica phenylacetate is oxidized, under anoxic conditions, to the common intermediate benzoyl-CoA via the intermediates phenylacetyl-CoA and phenylglyoxylate (benzoylformate). The enzyme that catalyzes the four-electron oxidation of phenylacetyl-CoA has been purified from this bacterium and studied. The enzyme preparation catalyzes the reaction phenylacetyl-CoA + 2 quinone + 2 H2O --> phenylglyoxylate + 2 quinone H2 + CoASH. Phenylacetyl-CoA:acceptor oxidoreductase is a membrane-bound molybdenum-iron-sulfur protein. The purest preparations contained three subunits of 93, 27, and 26 kDa. Ubiquinone is most likely to act as the electron acceptor, and the oxygen atom introduced into the product is derived from water. The protein preparations contained 0.66 mol Mo, 30 mol Fe, and 25 mol acid-labile sulfur per mol of native enzyme, assuming a native molecular mass of 280 kDa. Phenylglyoxylyl-CoA, but not mandelyl-CoA, was observed as a free intermediate. All enzyme preparations also catalyzed the subsequent hydrolytic release of coenzyme A from phenylglyoxylyl-CoA but not from phenylacetyl-CoA. The enzyme is reversibly inactivated by a low concentration of cyanide, but is remarkably stable with respect to oxygen. This new member of the molybdoproteins represents the first example of an enzyme which catalyzes the alpha-oxidation of a CoA-activated carboxylic acid without utilizing molecular oxygen.  (+info)

Neonatal rabbit proximal tubule basolateral membrane Na+/H+ antiporter and Cl-/base exchange. (8/1572)

The present in vitro microperfusion study examined the maturation of Na+/H+ antiporter and Cl-/base exchanger on the basolateral membrane of rabbit superficial proximal straight tubules (PST). Intracellular pH (pHi) was measured with the pH-sensitive fluorescent dye 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in neonatal and adult superficial PST. Na+/H+ antiporter activity was examined after basolateral Na+ addition in tubules initially perfused and bathed without Na+. Neonatal Na+/H+ antiporter activity was approximately 40% that of adult segment (9.7 +/- 1.5 vs. 23.7 +/- 3.2 pmol. mm-1. min-1; P < 0.001). The effect of bath Cl- removal on pHi was used to assess the rates of basolateral Cl-/base exchange. In both neonatal and adult PST, the Cl-/base exchange activity was significantly higher in the presence of 25 mM HCO-3 than in the absence of HCO-3 and was inhibited by cyanide and acetazolamide, consistent with Cl-/HCO-3 exchange. The proton flux rates in the presence of bicarbonate in neonatal and adult tubules were 14.1 +/- 3.6 and 19.5 +/- 3.5 pmol. mm-1min-1, respectively (P = NS), consistent with a mature rate of Cl-/HCO-3 exchanger activity in neonatal tubules. Basolateral Cl-/base exchange activity in the absence of CO2 and HCO-3, with luminal and bath cyanide and acetazolamide, was greater in adult than in neonatal PST and inhibited by bath DIDS consistent with a maturational increase in Cl-/OH- exchange. We have previously shown that the rates of the apical membrane Na+/H+ antiporter and Cl-/base exchanger were approximately fivefold lower in neonatal compared with adult rabbit superficial PST. These data demonstrate that neonatal PST basolateral membrane Na+/H+ antiporter and Cl-/base exchanger activities are relatively more mature than the Na+/H+ antiporter and Cl-/base exchangers on the apical membrane.  (+info)