Reduction of aneurysm clip artifacts on CT angiograms: a technical note. (1/188)

We describe a head tilt technique for use with CT angiography that reduces beam-hardening artifacts in patients with aneurysm clips. This simple maneuver directs the artifacts away from pertinent anatomy, thus increasing the chances for diagnostic accuracy. No significant changes in the CT angiographic protocol are required, and the maneuver can easily be combined with other artifact-minimizing strategies.  (+info)

Digitized cerebral synchrotron radiation angiography: quantitative evaluation of the canine circle of Willis and its large and small branches. (2/188)

BACKGROUND AND PURPOSE: Conventional X-ray angiography lacks the sensitivity and spatial resolution needed to detect small amounts of iodinated contrast material and to quantitate diameters of the small vessels in the brain. The purpose of this study was to ascertain whether digitized synchrotron radiation microangiography, with the use of a high-definition TV camera system, can accurately show small cerebral vessels. METHODS: Six anesthetized dogs were exposed to monochromatic synchrotron radiation with an energy level of 33.3 keV optimized for iodine detection while iodinated contrast material was injected into the brachiocephalic and vertebral arteries. The images were detected with a high-definition TV camera system with a spatial resolution of 30 microm. In all, 26 cerebral angiograms of the circle of Willis with its branches were obtained, and the images were digitized at a workstation. RESULTS: The small branches of the circle of Willis were clearly visible on all images. Vasodilatation of the circle of Willis and its large and small branches induced by CO2 inhalation was quantitatively confirmed on the images: for example, the diameter of one small branch was increased from 0.24 +/- 0.04 mm to 0.38 +/- 0.12 mm. Temporal subtraction improved the image quality. CONCLUSION: The synchrotron radiation angiographic system is useful for visualizing large and small vessels deep in the brain as well as for quantitating their diameters.  (+info)

Influence of the collateral function of the circle of Willis on hemispherical perfusion during carotid occlusion as assessed by transcranial colour-coded duplex ultrasonography. (3/188)

OBJECTIVES: to investigate the collateral potential of the circle of Willis with transcranial colour-coded duplex ultrasonography and common carotid artery (CCA) compression. MATERIALS AND METHODS: in 46 atherosclerotic patients without cerebrovascular disease, the functional patency of the collaterals of the circle of Willis, the anterior and posterior communicating arteries, was assessed. The Peak Systolic Velocity (PSV) decrease in the middle cerebral artery (MCA) during CCA compression between complete and incomplete circles was compared. RESULTS: in 10 (22%) patients a complete and in 36 (78%) patients an incomplete circle of Willis was found, mainly due to non-functioning posterior communicating arteries. In hemispheres with collateral supply through both the anterior and the posterior communicating artery, the median PSV decrease in the MCA during CCA compression was 43%. When the posterior, anterior or both communicating arteries (1 hemisphere) were missing the PSV decrease was 58% (p =0.003), 70% (p =0.001) and 75%, respectively. CONCLUSIONS: collateral flow from the basilar to the carotid territory is often hampered by non-functioning posterior communicating arteries. A non-functioning anterior communicating artery is rare. A complete collateral circulation provides better perfusion of the MCA during carotid occlusion as compared with collateral supply through only the anterior or the posterior communicating artery in the case of an incomplete circle of Willis.  (+info)

Cerebral hemodynamics in relation to patterns of collateral flow. (4/188)

BACKGROUND AND PURPOSE: We sought to investigate the relation between collateral flow via different pathways and hemodynamic parameters measured by dynamic susceptibility contrast-enhanced MRI in patients with severe carotid artery disease. METHODS: Dynamic susceptibility contrast-enhanced MRI was performed in 66 patients and 33 control subjects. Patients had severe stenosis (>70%, n=12), unilateral occlusion (n=38), or bilateral occlusion (n=16) of the internal carotid artery (ICA). Cerebripetal flow and collateral flow via the circle of Willis were investigated with MR angiography. Collateral flow via the ophthalmic artery was investigated with transcranial Doppler sonography. RESULTS: Patients with ICA stenosis had well-preserved cerebral perfusion and were in general not dependent on collateral supply. Patients with unilateral ICA occlusion had impaired cerebral perfusion. However, appearance time, peak time, and mean transit time in white matter were less increased in patients with than in patients without collateral flow via the circle of Willis (P<0.05). Furthermore, patients with collateral flow via both anterior and posterior communicating arteries had less increased regional cerebral blood volume than patients with collateral flow via the posterior communicating artery only (P<0.05). Patients with bilateral ICA occlusion had severely compromised hemodynamic status despite recruitment of collateral supply. CONCLUSIONS: In patients with unilateral ICA occlusion, the pattern of collateral supply has significant influence on hemodynamic status. Collateral flow via the anterior communicating artery is a sign of well-preserved hemodynamic status, whereas no collateral flow via the circle of Willis or flow via only the posterior communicating artery is a sign of deteriorated cerebral perfusion.  (+info)

Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. (5/188)

Although the serine protease, tissue plasminogen activator (tPA), is approved by the US Food and Drug Administration for therapy to combat focal cerebral infarction, the basic concept of thrombolytic tPA therapy for stroke was challenged by recent studies that used genetically manipulated tPA-deficient (tPA-/-) mice, which suggested that tPA mediates ischemic neuronal damage. However, those studies were potentially flawed because the genotypes of tPA-/- and wild-type control mice were not entirely clear, and ischemic neuronal injury was evaluated in isolation of tPA effects on brain thrombosis. Using mice with appropriate genetic backgrounds and a middle cerebral artery occlusion stroke model with nonsiliconized thread, which does lead to microvascular thrombus formation, in the present study we determined the risk for cerebrovascular thrombosis and neuronal injury in tPA-/- and genetically matched tPA+/+ mice subjected to transient focal ischemia. Cerebrovascular fibrin deposition and the infarction volume were increased by 8.2- and 6. 7-fold in tPA-/- versus tPA+/+ mice, respectively, and these variables were correlated with reduced cerebral blood flow up to 58% (P<0.05) and impaired motor neurological score by 70% (P<0.05). Our findings indicate that tPA deficiency exacerbates ischemia-induced cerebrovascular thrombosis and that endogenous tPA protects the brain from an ischemic insult, presumably through its thrombolytic action. In addition, our study emphasizes the importance of appropriate genetic controls in murine stroke research.  (+info)

Comprehensive transcript analysis in small quantities of mRNA by SAGE-lite. (6/188)

Serial analysis of gene expression (SAGE) is a powerful technique that can be used for global analysis of gene expression. Its chief advantage over other methods is that SAGE does not require prior knowledge of the genes of interest and provides quantitative and qualitative data of potentially every transcribed sequence in a particular tissue or cell type. Furthermore, SAGE can quantify low-abundance transcripts and reliably detect relatively small differences in transcript abundance between cell populations. However, SAGE demands high input levels of mRNA which are often unavailable, particularly when studying human disease. To overcome this limitation, we have developed a modification of SAGE that allows detailed global analysis of gene expression in extremely small quantities of tissue or cultured cells. We have called this approach 'SAGE-Lite'. This technique was used for the global analysis of transcription in samples of normal and pathological human cerebrovasculature to study the molecular pathology of intracranial aneurysms. These samples, which are obtained during operative surgical repair, are typically no bigger than 1 or 2 mm and yield <100 ng of total RNA. In addition, we show that SAGE-Lite allows simple and rapid isolation of long cDNAs from short (15 bp) SAGE sequence tags.  (+info)

Circle of Willis collateral flow investigated by magnetic resonance angiography. (7/188)

BACKGROUND AND PURPOSE: The circle of Willis (CW) is considered an important collateral pathway in maintaining adequate cerebral blood flow in patients with internal carotid artery (ICA) obstruction. We aimed to investigate the anatomic variation of the CW in patients with severe symptomatic carotid obstructive disease and to analyze diameter changes of its components in relation to varying grades of ICA obstruction and in relation to the presence or absence of (retrograde) collateral flow. METHODS: Seventy-five patients with minor disabling neurological deficits and with ICA stenoses or occlusions were categorized into 4 groups according to the severity of ICA obstruction. This patient population reflected a relatively favorable subgroup of cerebral infarction (considering their minor neurological deficits). All subjects underwent magnetic resonance angiography, including magnetic resonance angiography sensitive to flow direction. CW morphology and the size of its components were determined and compared with those values in control subjects (n=100). RESULTS: Compared with control subjects, patients demonstrated a significantly higher percentage of entirely complete CW configurations (55% versus 36%, P=0.02), complete anterior configurations (88% versus 68%, P=0.002), and complete posterior CW configurations (63% versus 47%, P=0.04). Patients with severe ICA stenosis did not show significantly increased CW vessel diameters. Patients with ICA occlusion demonstrated a high prevalence of collateral flow through the anterior CW and significantly increased diameters of the communicating channels. Patients with bilateral ICA occlusion relied on collateral flow via the posterior CW and demonstrated a bilateral increase in posterior communicating artery diameters (P<0.05). CONCLUSIONS: The anatomic and functional configuration of the CW reflects the degree of ICA obstruction.  (+info)

Contrast-enhanced transcranial color-coded duplexsonography in stroke patients with limited bone windows. (8/188)

BACKGROUND AND PURPOSE: Thickening of the temporal bone in stroke-age patients may obviate sonographic evaluation of the circle of Willis in 20% to 30% of patients. We assessed the diagnostic efficacy of contrast-enhanced transcranial color-coded duplexsonography (TCCD) for noninvasive evaluation of the circle of Willis in stroke patients with limited bone windows. METHODS: Of 171 consecutive patients who presented with ischemic symptoms in the middle cerebral artery (MCA) territory, 49 patients (32 female, 17 male; age range, 70.5+/-10.6 years) had no detectable colorflow signals from the circle of Willis by TCCD because of limited acoustic windows. These 49 patients received an IV injection of a sonographic contrast-enhancing agent, Levovist (Schering; Berlin, Germany), and were re-examined. Correlative imaging studies of the circle of Willis were obtained in 42 of 49 of these patients. RESULTS: In 38 of 49 patients, contrast-enhanced TCCD enabled full visualization of the circle of Willis bilaterally; in an additional five patients, contrast-enhanced TCCD revealed only the portion of the circle of Willis ipsilateral to the probe through one temporal bone. In six of these 43 patients, contrast-enhanced TCCD showed MCA stenosis and MCA occlusion in three; three of the six cases of MCA stenosis and all three cases of the MCA occlusion were found on the symptomatic side. In six of 49 patients, no colorflow signals were obtained after contrast enhancement. All contrast-enhanced TCCD findings were confirmed by CT angiography, transfemoral digital subtraction angiography, MR angiography, or a combination of all three correlative studies. Levovist produced no serious adverse events. CONCLUSION: In stroke-age patients with limited acoustic windows, contrast-enhancement with Levovist can markedly increase the sensitivity of TCCD and increase the detection of clinically relevant intracranial arterial disease.  (+info)