(1/1532) Ciprofloxacin decreases the rate of ethanol elimination in humans.

BACKGROUND: Extrahepatic ethanol metabolism is postulated to take place via microbial oxidation in the colon, mediated by aerobic and facultative anaerobic bacteria. AIMS: To evaluate the role of microbial ethanol oxidation in the total elimination rate of ethanol in humans by reducing gut flora with ciprofloxacin. METHODS: Ethanol was administered intravenously at the beginning and end of a one week period to eight male volunteers. Between ethanol doses volunteers received 750 mg ciprofloxacin twice daily. RESULTS: A highly significant (p=0.001) reduction in the ethanol elimination rate (EER) was detected after ciprofloxacin medication. Mean (SEM) EER was 107.0 (5.3) and 96.9 (4.8) mg/kg/h before and after ciprofloxacin, respectively. Faecal Enterobacteriaceae and Enterococcus sp. were totally absent after medication, and faecal acetaldehyde production capacity was significantly (p<0.05) decreased from 0.91 (0.15) to 0.39 (0.08) nmol/min/mg protein. Mean faecal alcohol dehydrogenase (ADH) activity was significantly (p<0. 05) decreased after medication, but ciprofloxacin did not inhibit human hepatic ADH activity in vitro. CONCLUSIONS: Ciprofloxacin treatment decreased the ethanol elimination rate by 9.4%, with a concomitant decrease in intestinal aerobic and facultative anaerobic bacteria, faecal ADH activity, and acetaldehyde production. As ciprofloxacin has no effect on liver blood flow, hepatic ADH activity, or cytochrome CYP2E1 activity, these effects are probably caused by the reduction in intestinal flora.  (+info)

(2/1532) Acute effects of ethanol on kainate receptors with different subunit compositions.

Previous studies showed that recombinant homomeric GluR6 receptors are acutely inhibited by ethanol. This study examined the acute actions of ethanol on recombinant homomeric and heteromeric kainate (KA) receptors with different subunit configurations. Application of 25 to 100 mM ethanol produced inhibition of a similar magnitude of both GluR5-Q and GluR6-R KA receptor-dependent currents in Xenopus oocytes. Ethanol decreased the KA Emax without affecting the EC50 and its effect was independent of the membrane holding potential for both of these receptors subtypes. Ethanol also inhibited homomeric and heteromeric receptors transiently expressed in human embryonic kidney (HEK) 293 cells. In these cells, the expression of heteromeric GluR6-R subunit-containing receptors was confirmed by testing their sensitivity to 1 mM alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid. Ethanol inhibited to a similar extent KA-gated currents mediated by receptors composed of either GluR6 or GluR6 + KA1 subunits, and to a slightly lesser extent receptors composed of GluR6 + KA2 subunits. Acute ethanol's effects were tested on GluR5 KA receptors that are expressed as homomers (GluR5-Q) or heteromers (GluR5-R + KA1 and GluR5-R + KA2). Homomeric and heteromeric GluR5 KA receptors were all inhibited to a similar extent by ethanol; however, there was slightly more inhibition of GluR5-R + KA2 receptors. Thus, recombinant KA receptors with different subunit compositions are all acutely inhibited to a similar extent by ethanol. In light of recent reports that KA receptors regulate neurotransmitter release and mediate synaptic currents, we postulate that these receptors may play a role in acute ethanol intoxication.  (+info)

(3/1532) NMDA receptor characterization and subunit expression in rat cultured mesencephalic neurones.

1. NMDA-induced changes in free intracellular Ca2+ concentration ([Ca2+]i) were determined in individual cultured rat mesencephalic neurones by the fura-2 method. mRNA expression encoding NMDA receptor subunits (NR1, NR2A-D) was examined by RT-PCR. 2. NMDA (1-100 microM, plus 10 microM glycine) induced a concentration-dependent increase in [Ca2+]i (EC50 = 5.7 microM). The effect of NMDA was virtually insensitive to tetrodotoxin (0.3 microM) and nitrendipine (1 microM), but dependent on extracellular Ca2+. 5,7-Dichlorokynurenic acid (10 microM), a specific antagonist at the glycine binding site on the NMDA receptor, abolished the NMDA response. 3. Memantine, an open-channel blocker, and ifenprodil, a preferential non-competitive NR1/NR2B receptor antagonist diminished the NMDA effect with an IC50 value of 0.17 and 1 microM, respectively. Ethanol at 50 and 100 mM caused about 25 and 45%-inhibition, respectively. 4. Agarose gel analysis of the PCR products followed by ethidium bromide fluorescence or CSPD chemiluminescence detection revealed an almost exclusive expression of the NR1 splice variants lacking exon (E) 5 and E22. The 3' splice form without both E21 and E22 exceeded that containing E21 by approximately 4 fold. The relative amounts of NR2A, NR2B, NR2C corresponded to approximately 1:2:1. NR2D mRNA was also detectable. 5. In conclusion, mesencephalic neurones bear ethanol-sensitive NMDA receptors which might be involved in the development of ethanol dependence and withdrawal. The high affinity of NMDA to this receptor, its sensitivity to ifenprodil and memantine may suggest that the mesencephalic NMDA receptor comprises the NR1 splice variant lacking E5, NR2B, and NR2C, respectively.  (+info)

(4/1532) Effects of alcohol and cholesterol feeding on lipoprotein metabolism and cholesterol absorption in rabbits.

Alcohol fed to rabbits in a liquid formula at 30% of calories increased plasma cholesterol by 36% in the absence of dietary cholesterol and by 40% in the presence of a 0.5% cholesterol diet. The increase was caused almost entirely by VLDL, IDL, and LDL. Cholesterol feeding decreased the fractional catabolic rate for VLDL and LDL apoprotein by 80% and 57%, respectively, and increased the production rate of VLDL and LDL apoprotein by 75% and 15%, respectively. Alcohol feeding had no effect on VLDL apoprotein production but increased LDL production rate by 55%. The efficiency of intestinal cholesterol absorption was increased by alcohol. In the presence of dietary cholesterol, percent cholesterol absorption rose from 34.4+/-2.6% to 44.9+/-2.5% and in the absence of dietary cholesterol, from 84.3+/-1.4% to 88.9+/-1.0%. Increased cholesterol absorption and increased LDL production rate may be important mechanisms for exacerbation by alcohol of hypercholesterolemia in the cholesterol-fed rabbit model.  (+info)

(5/1532) Mode of action of ICS 205,930, a novel type of potentiator of responses to glycine in rat spinal neurones.

The effect of a novel potentiator of glycine responses, ICS 205,930, was studied by whole-cell recordings from spinal neurones, and compared with that of other known potentiators, in an attempt to differentiate their sites of action. The ability of ICS 205,930 (0.2 microM) to potentiate glycine responses persisted in the presence of concentrations of Zn2+ (5-10 microM) that were saturating for the potentiating effect of this ion. Preincubation with 10 microM Zn2+ before application of glycine plus Zn2+ had an inhibitory effect, which did not result from Zn2+ entry into the neurone, since it persisted with either 10 mM internal EGTA or 10 microM internal Zn2+. To test whether the potentiating effects of ICS 205,930 and Zn2+ interact, both compounds were applied without preincubation. The potentiating effect of ICS 205,930 was similar for responses to glycine and for responses to glycine plus Zn2+, provided the concentrations of agonist were adjusted so as to induce control responses of identical amplitudes. ICS 205,930 remained able to potentiate glycine responses in the presence of ethanol (200 mM). ICS 205,930 also retained its potentiating effect in the presence of the anaesthetic propofol (30 90 microM), which strongly potentiated glycine responses but, in contrast with ICS 205,930, also markedly increased the resting conductance. The anticonvulsant chlormethiazole (50-100 microM) neither potentiated glycine responses nor prevented the effect of ICS 205,930, even though it increased the resting conductance and potentiated GABA(A) responses. The mechanism of action of ICS 205,930 appears to be different from those by which Zn2+, propofol or ethanol potentiate glycine responses.  (+info)

(6/1532) Sweat ethanol concentrations are highly correlated with co-existing blood values in humans.

This study compared the concentration of ethanol, both absolute and relative to water content, in sweat and blood. Ten male volunteers consumed approximately 13 mmol (kg body weight)-1 of ethanol. Blood and sweat samples were collected approximately 1, 2 and 3 h following ingestion. Sweat was collected following pilocarpine iontophoresis using an anaerobic technique that prevented ethanol evaporation. In addition, the water content of sweat and blood samples was determined. The correlation between sweat and blood ethanol, expressed in mmol l-1, was r = 0.98. The slope of the relationship was 0.81. When corrected for the water content in each sample, and expressed as mmoles per litre of water, the correlation remained very high (r = 0.97) while the slope increased to 1.01. These results suggest that rapid and complete equilibrium of ethanol occurs across the sweat gland epithelium.  (+info)

(7/1532) Diffusion of dialkylnitrosamines into the rat esophagus as a factor in esophageal carcinogenesis.

To indicate how readily nitrosamines (NAms) diffuse into the esophagus, we measured diffusion rate (flux) through rat esophagus of dialkyl-NAms using side-by-side diffusion apparatuses. Mucosal and serosal flux at 37 degrees C of two NAms, each at 50 microM, was followed for 90 min by gas chromatography-thermal energy analysis of NAms in the receiver chamber. Mucosal flux of one or two NAms at a time gave identical results. Mucosal flux was highest for the strong esophageal carcinogens methyl-n-amyl-NAm (MNAN) and methylbenzyl-NAm. Mucosal esophageal flux of 11 NAms was 18-280 times faster and flux of two NAms through skin was 13-28 times faster than that predicted for skin from the molecular weights and octanol:water partition coefficients, which were also measured. Mucosal: serosal flux ratio was correlated (P < 0.05) with esophageal carcinogenicity and molecular weight. For seven NAms tested for carcinogenicity by Druckrey et al. [(1967) Z. Krebsforsch., 69, 103-201], mucosal flux was correlated with esophageal carcinogenicity with borderline significance (P = 0.07). The MNAN:dipropyl-NAm ratio for mucosal esophageal flux was unaffected when rats were treated with phenethylisothiocyanate and was similar to that for forestomach, indicating no involvement by cytochromes P450. Mucosal esophageal flux of MNAN and dimethyl-NAm was reduced by >90% on enzymic removal of the stratum corneum, was unaffected by 0.1 mM verapamil and was inhibited 67-94% by 1.0 mM KCN and 82-93% by 0.23% ethanol. NAm flux through rat skin and jejunum was 5-17% of that through esophagus. Flux through skin increased 5-13 times after enzymic or mechanical removal of the epidermis; the histology probably explained this difference from esophagus. Hence, NAms could be quite rapidly absorbed by human esophagus when NAm-containing foods or beverages are swallowed, the esophageal carcinogenicity of NAms may be partly determined by their esophageal flux and NAm flux probably occurs by passive diffusion.  (+info)

(8/1532) Dental anesthetic management of a patient with ventricular arrhythmias.

During routine deep sedation for endodontic therapy, a dentist-anesthesiologist observed premature ventricular contractions (PVCs) on a 62-yr-old woman's electrocardiogram (EKG) tracing. The dentist was able to complete the root canal procedure under intravenous (i.v.) sedation without any problems. The dentist-anesthesiologist referred the patient for medical evaluation. She was found to be free from ischemic cardiac disease with normal ventricular function. The patient was cleared to continue her dental treatment with deep sedation. She subsequently continued to undergo dental treatment with deep intravenous sedation without incident, although her EKG exhibited frequent PVCs, up to 20 per minute, including couplets and episodes of trigeminy. This article will review indications for medical intervention, antiarrhythmic medications, and anesthetic interventions for perioperative PVCs.  (+info)