Modulation of calcium mobilization in aortic rings of pregnant rats: Contribution of extracellular calcium and of voltage-operated calcium channels. (1/407)

Pregnancy is associated with decreased vascular responsiveness to vasopressor stimuli. We have tested the involvement of Ca2+ mobilization in myotropic responses of aortic rings obtained from pregnant and virgin rats. Contractions of the rings to phenylephrine, in the absence of calcium in the bathing medium, were lower in tissues from virgin than from pregnant rats. Concentration-response curves to CaCl2 that were measured after stimulation by phenylephrine in the absence of Ca2+ were shifted to higher levels of contraction. This was not observed when KCl was used to prestimulate the aorta. D-600, a phenylalkylamine calcium channel blocker, similarly inhibited these responses to CaCl2 in tissues from both pregnant and virgin animals. D-600 exerted a concentration-dependent inhibition of responses to phenylephrine and KCl. However, the calcium antagonist was less effective in aortic rings of pregnant than of virgin rats. Basal 45Ca2+ uptake was lower in aortic rings from pregnant than from virgin rats, and Bay K 8644 was unable to reverse this difference. The time course of basal and stimulated (KCl) 45Ca2+ influx was lower in aorta of pregnant rats at all times studied. Moreover, when the intracellular calcium pools were emptied with phenylephrine, the refilling of these pools was delayed in aortic rings of pregnant rats. These results indicate an altered extracellular calcium mobilization of aortic rings from pregnant rats. These changes may be due to a functional alteration of the voltage-operated calcium channels during pregnancy.  (+info)

A non-pungent triprenyl phenol of fungal origin, scutigeral, stimulates rat dorsal root ganglion neurons via interaction at vanilloid receptors. (2/407)

1. A [3H]-resiniferatoxin (RTX) binding assay utilizing rat spinal cord membranes was employed to identify novel vanilloids in a collection of natural products of fungal origin. Of the five active compounds found (scutigeral, acetyl-scutigeral, ovinal, neogrifolin, and methyl-neogrifolin), scutigeral (Ki=19 microM), isolated from the edible mushroom Albatrellus ovinus, was selected for further characterization. 2. Scutigeral induced a dose-dependent 45Ca uptake by rat dorsal root ganglion neurons with an EC50 of 1.6 microM, which was fully inhibited by the competitive vanilloid receptor antagonist capsazepine (IC50=5.2 microM). 3. [3H]-RTX binding isotherms were shifted by scutigeral (10-80 microM) in a competitive manner. The Schild plot of the data had a slope of 0.8 and gave an apparent Kd estimate for scutigeral of 32 microM. 4. Although in the above assays scutigeral mimicked capsaicin, it was not pungent on the human tongue up to a dose of 100 nmol per tongue, nor did it provoke protective wiping movements in the rat (up to 100 microM) upon intraocular instillation. 5. In accord with being non-pungent, scutigeral (5 microM) did not elicit a measurable inward current in isolated rat dorsal root ganglion neurons under voltage-clamp conditions. It did, however, reduce the proportion of neurons (from 61 to 15%) that responded to a subsequent capsaicin (1 microM) challenge. In these neurons, scutigeral both delayed (from 27 to 72 s) and diminished (from 5.0 to 1.9 nA) the maximal current evoked by capsaicin. 6. In conclusion, scutigeral and its congeners form a new chemical class of vanilloids, the triprenyl phenols. Scutigeral promises to be a novel chemical lead for the development of orally active, non-pungent vanilloids.  (+info)

Ni2+ transport by the human Na+/Ca2+ exchanger expressed in Sf9 cells. (3/407)

The mechanism of Ni2+ block of the Na+/Ca2+ exchanger was examined in Sf 9 cells expressing the human heart Na+/Ca2+ exchanger (NCX1-NACA1). As predicted from the reported actions of Ni2+, its application reduced extracellular Na+-dependent changes in intracellular Ca2+ concentration (measured by fluo 3 fluorescence changes). However, contrary to expectation, the reduced fluorescence was accompanied by measured 63Ni2+ entry. The 63Ni2+ entry was observed in Sf 9 cells expressing the Na+/Ca2+ exchanger but not in control cells. The established sequential transport mechanism of the Na+/Ca2+ exchanger could be compatible with these results if one of the two ion translocation steps is blocked by Ni2+ and the other permits Ni2+ translocation. We conclude that, because Ni2+ entry was inhibited by extracellular Ca2+ and enhanced by extracellular Na+, the Ca2+ translocation step moved Ni2+, whereas the Na+ translocation step was inhibited by Ni2+. A model is presented to discuss these findings.  (+info)

Chronic fluoride ingestion decreases 45Ca uptake by rat kidney membranes. (4/407)

High exposures to fluoride (F-) may occur in environments rich in F- from natural or industrial sources and from misuse of F--containing dental care products, particularly by children. Both acute and chronic exposures to elevated levels of F- have negative effects on several calcium-dependent processes, including kidney glomerular and tubular function. We examined the effect of chronic F- ingestion on ATP-dependent 45Ca uptake by rat kidney membrane vesicles to characterize the mechanism by which high F- alters Ca++ transport in the kidney. Twenty weanling female Sprague-Dawley rats were raised on low-F- (0.9 mg/L), semi-purified diet with a Ca++ concentration of 400 mg/100g diet. Rats were divided into four groups and were fed ad libitum deionized water containing F- at 0, 10, 50, or 150 mg/L added as NaF for 6 wk. This consumption produced plasma F- levels of <0.4, 2, 7, or 35 micromol/L, respectively. ATP-dependent 45Ca uptake was significantly lower in the 150 mg F-/L exposure group than in the 0 mg F-/L controls (P < 0.05). Studies with thapsigargin, a specific inhibitor of the endoplasmic reticulum Ca++-pump, showed that the lower uptake was associated with significantly lower activities of both the plasma membrane Ca++-pump (P < 0.05, 150 mg F-/L group versus control) and endoplasmic reticulum Ca++-pump (P < 0.05 for both the 50 and 150 mg F-/L groups versus control). Slot blot analysis of kidney homogenates with specific Ca++-pump antibodies showed less (P < 0.05) endoplasmic reticulum Ca++-pump protein and plasma membrane Ca++-pump protein in all treatment groups than controls. Both Ca++-pumps are transport molecules of great importance in the regulation of Ca++ homeostasis. Our study suggests that chronic, high F- ingestion producing high plasma F- levels may occur in humans and may affect Ca++ homeostasis by increasing the turnover or breakdown or decreasing the expression of plasma membrane and endoplasmic reticulum Ca++-pump proteins.  (+info)

Stimulation of neutrophils by prenylcysteine analogs: Ca(2+) release and influx. (5/407)

Farnesylthiosalicylic acid (FTS), a synthetic analog of the terminal prenylcysteine present in signaling proteins induces generation of superoxide ions, phospholipase C-driven hydrolysis of inositol lipids and calcium elevation in human neutrophils and DMSO-differentiated HL60 cells. These effects were ascribed to an interaction of the analog with elements responsible for recognition of specific prenylated proteins. The present study demonstrated that in addition to the release of intracellular calcium stores, FTS enhanced entry of Ca(2+) and Mn(2+) from the medium. The biphasic dependence of the influx on the concentration of FTS, as well as its insensitivity to inhibition by PMA and La(3+) suggest that the influx pathway activated by FTS is distinct from the previously described store-operated calcium channels of neutrophils. Consistent with the participation of a cellular membrane component in the interaction, FTS enhanced (45)Ca uptake in neutrophils and neutrophil cell membranes, but not in multilamellar vesicles. To establish specificity of the farnesyl moiety of FTS (C(15)), effects of three other analogs, geranylthiosalicylate, GTS (C(10)), geranylgeranylthiosalicylate, GGTS (C(20)), as well as the carboxymethyl ester FTS-Me on calcium homeostasis and superoxide production were investigated. GGTS dose-dependently elevated [Ca(2+)](i), induced quenching of the 360 nm Fura-2-calcium fluorescence by Mn(2+) and stimulated superoxide release, while GTS and FTS-Me were inactive. These results defined specific structural requirements for the functional interaction of prenylcysteine analogs with myeloid cells.  (+info)

Intracellular Ca(2+)-Mg(2+)-ATPase regulates calcium influx and acrosomal exocytosis in bull and ram spermatozoa. (6/407)

Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  (+info)

Demonstration of the rapid action of pure crystalline 1 alpha-hydroxy vitamin D3 and 1 alpha,25-dihydroxy vitamin D3 on intestinal calcium uptake. (7/407)

The biological effects of crystalline 1alpha-hydroxyvitamin D3 and crystalline 1alpha,25-dihydroxyvitamin D3 have been compared on the intestinal uptake of calcium-45 by everted duodenal gut sacs from rachitic rats. Peak calcium-45 uptake was observed 1 hr after intravenous administration and both crystalline vitamin D2 analogs were of comparable potency. The rapid onset of calcium-45 uptake and the rapid attainment of maximal calcium-45 transport suggests a direct effect of these crystalline analogs on the mucosal membranes of the intestinal cell.  (+info)

Xestoquinone, isolated from sea sponge, causes Ca(2+) release through sulfhydryl modification from skeletal muscle sarcoplasmic reticulum. (8/407)

Xestoquinone (XQN) (3 x 10(-7) to 3 x 10(-3) M), isolated from the sea sponge Xestospongia sapra, induced a concentration-dependent Ca(2+) release from the heavy fraction of fragmented sarcoplasmic reticulum (HSR) of rabbit skeletal muscle with an EC(50) value of approximately 30 microM. On the basis of the EC(50), XQN is 10 times more potent than caffeine. Dithiothreitol completely blocked XQN-induced Ca(2+) release from HSR without affecting that induced by caffeine. Caffeine-induced Ca(2+) release was reduced markedly by Mg(2+), procaine, and ruthenium red, agents that are known to block release of Ca(2+) from sarcoplasmic reticulum, whereas that induced by XQN was not inhibited. The bell-shaped profile of Ca(2+) dependence for XQN was significantly shifted upward in a wider range of pCa (between 7 and 3), whereas that for caffeine was shifted to the left in a narrower range of pCa (between 8 and 7). The maximum response to caffeine in (45)Ca(2+) release was not affected by 9-methyl-7-bromoeudistomin D, whereas the response was further increased by XQN. XQN caused a concentration-dependent decrease in [(3)H]ryanodine binding to HSR. This effect of XQN also was abolished in the presence of dithiothreitol. Scatchard analysis revealed that the mode of inhibition by XQN was noncompetitive in [(3)H]ryanodine binding to HSR. These results indicate that sulfhydryl groups are involved in both the XQN effect on ryanodine binding and on Ca(2+) release.  (+info)